
www.manaraa.com

University of Iowa University of Iowa

Iowa Research Online Iowa Research Online

Theses and Dissertations

Fall 2012

Fault diagnosis of VLSI designs: cell internal faults and volume Fault diagnosis of VLSI designs: cell internal faults and volume

diagnosis throughput diagnosis throughput

Xiaoxin Fan
University of Iowa

Follow this and additional works at: https://ir.uiowa.edu/etd

 Part of the Electrical and Computer Engineering Commons

Copyright 2012 Xiaoxin Fan

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/3450

Recommended Citation Recommended Citation
Fan, Xiaoxin. "Fault diagnosis of VLSI designs: cell internal faults and volume diagnosis throughput." PhD
(Doctor of Philosophy) thesis, University of Iowa, 2012.
https://doi.org/10.17077/etd.1q4hkje6

Follow this and additional works at: https://ir.uiowa.edu/etd

 Part of the Electrical and Computer Engineering Commons

https://ir.uiowa.edu/
https://ir.uiowa.edu/etd
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F3450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17077/etd.1q4hkje6
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F3450&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

1

FAULT DIAGNOSIS OF VLSI DESIGNS: CELL INTERNAL FAULTS AND

VOLUME DIAGNOSIS THROUGHPUT

by

Xiaoxin Fan

An Abstract

Of a thesis submitted in partial fulfillment
of the requirements for the Doctor of

Philosophy degree in Electrical and Computer Engineering
in the Graduate College of

The University of Iowa

December 2012

Thesis Supervisor: Professor Sudhakar M. Reddy

www.manaraa.com

1

1

ABSTRACT

The modern VLSI circuit designs manufactured with advanced technology nodes

of 65nm or below exhibit an increasing sensitivity to the variations of manufacturing

process. New design-specific and feature-sensitive failure mechanisms are on the rise.

Systematic yield issues can be severe due to the complex variability involved in process

and layout features. Without improved yield analysis methods, time-to-market is delayed,

mature yield is suboptimal, and product quality may suffer, thereby undermining the

profitability of the semiconductor company. Diagnosis-driven yield improvement is a

methodology that leverages production test results, diagnosis results, and statistical

analysis to identify the root cause of yield loss and fix the yield limiters to improve the

yield.

To fully leverage fault diagnosis, the diagnosis-driven yield analysis requires that

the diagnosis tool should provide high-quality diagnosis results in terms of accuracy and

resolution. In other words, the diagnosis tool should report the real defect location

without too much ambiguity. The second requirement for fast diagnosis-driven yield

improvement is that the diagnosis tool should have the capability of processing a volume

of failing dies within a reasonable time so that the statistical analysis can have enough

information to identify the systematic yield issues.

In this dissertation, we first propose a method to accurately diagnose the defects

inside the library cells when multi-cycle test patterns are used. The methods to diagnose

the interconnect defect have been well studied for many years and are successfully

practiced in industry. However, for process technology at 90nm or 65nm or below, there

is a significant number of manufacturing defects and systematic yield limiters lie inside

library cells. The existing cell internal diagnosis methods work well when only

combinational test patterns are used, while the accuracy drops dramatically with multi-

cycle test patterns. A method to accurately identify the defective cell as well as the failing

www.manaraa.com

2

2

conditions is presented. The accuracy can be improved up to 94% compared with about

75% accuracy for previous proposed cell internal diagnosis methods.

The next part of this dissertation addresses the throughput problem for diagnosing

a volume of failing chips with high transistor counts. We first propose a static design

partitioning method to reduce the memory footprint of volume diagnosis. A design is

statically partitioned into several smaller sub-circuits, and then the diagnosis is performed

only on the smaller sub-circuits. By doing this, the memory usage for processing the

smaller sub-circuit can be reduced and the throughput can be improved. We next present

a dynamic design partitioning method to improve the throughput and minimize the

impact on diagnosis accuracy and resolution. The proposed dynamic design partitioning

method is failure dependent, in other words, each failure file has its own design partition.

Extensive experiments have been designed to demonstrate the efficiency of the proposed

dynamic partitioning method.

Abstract Approved: ____________________________________
 Thesis Supervisor

 Title and Department

 Date

www.manaraa.com

3

FAULT DIAGNOSIS OF VLSI DESIGNS: CELL INTERNAL FAULTS AND

VOLUME DIAGNOSIS THROUGHPUT

by

Xiaoxin Fan

A thesis submitted in partial fulfillment
of the requirements for the Doctor of

Philosophy degree in Electrical and Computer Engineering
in the Graduate College of

The University of Iowa

December 2012

Thesis Supervisor: Professor Sudhakar M. Reddy

www.manaraa.com

4

Copyright by

XIAOXIN FAN

2012

All Rights Reserved

www.manaraa.com

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Xiaoxin Fan

has been approved by the Examining Committee
for the thesis requirement for the Doctor of Philosophy
degree in Electrical and Computer Engineering at the December 2012
graduation.

Thesis Committee: ___________________________________
 Sudhakar M. Reddy, Thesis Supervisor

 David R. Andersen

 Wu-Tung Cheng

 Jon G. Kuhl

 Xiaodong Wu

 Hantao Zhang

www.manaraa.com

 ii

2

To My Family

www.manaraa.com

 iii

3

ACKNOWLEDGMENTS

I would like to take this opportunity to express my sincere gratitude to all those

who supported and encouraged me for completing this dissertation. First and foremost,

words are not enough to express my appreciation to my PhD advisor, Professor Sudhakar

M. Reddy. His knowledge, encouragement, patience, and guidance were invaluable in my

graduate study and my life at University of Iowa. I learned a great deal from his problem

solving skills and profound knowledge. I would also like to gratefully acknowledge Dr.

Wu-Tung Cheng. He used his knowledgeable explanation and constructive suggestions to

help and encourage me to overcome the difficulties in both research and life. I also want

to thank my committee members Professor David R. Andersen, Professor Jon G. Kuhl,

Professor Xiaodong Wu and Professor Hantao Zhang for their valuable feedbacks, and

time and efforts spent in serving on my thesis committee. Many thanks to Huaxing Tang,

Yu Huang, Brady Benware and Manish Sharma at Mentor Graphics who provided a great

deal of helpful suggestions on my research projects .

I want to thank my colleagues at the Mentor Graphics - Ruifeng Guo, Liyang Lai,

Xijiang Lin, Chen Wang, Shuo Sheng, Wei Zou, Wu Yang, Xiaogang Du and Hans Tsai,

and friends at University of Iowa – Elham Khayat Moghaddam, Amit Kumar, Sharada

Jha and other friends who always gave me support.

Words cannot express my feelings of gratitude to my parent and my brother for

their love, continual encouragement and support throughout my life.

Finally, I would like to give my special thanks to my wife, Lei Bao, for her

understanding, love and support that accompanied me in these years.

www.manaraa.com

 iv

4

ABSTRACT

The modern VLSI circuit designs manufactured with advanced technology nodes

of 65nm or below exhibit an increasing sensitivity to the variations of manufacturing

process. New design-specific and feature-sensitive failure mechanisms are on the rise.

Systematic yield issues can be severe due to the complex variability involved in process

and layout features. Without improved yield analysis methods, time-to-market is delayed,

mature yield is suboptimal, and product quality may suffer, thereby undermining the

profitability of the semiconductor company. Diagnosis-driven yield improvement is a

methodology that leverages production test results, diagnosis results, and statistical

analysis to identify the root cause of yield loss and fix the yield limiters to improve the

yield.

To fully leverage fault diagnosis, the diagnosis-driven yield analysis requires that

the diagnosis tool should provide high-quality diagnosis results in terms of accuracy and

resolution. In other words, the diagnosis tool should report the real defect location

without too much ambiguity. The second requirement for fast diagnosis-driven yield

improvement is that the diagnosis tool should have the capability of processing a volume

of failing dies within a reasonable time so that the statistical analysis can have enough

information to identify the systematic yield issues.

In this dissertation, we first propose a method to accurately diagnose the defects

inside the library cells when multi-cycle test patterns are used. The methods to diagnose

the interconnect defect have been well studied for many years and are successfully

practiced in industry. However, for process technology at 90nm or 65nm or below, there

is a significant number of manufacturing defects and systematic yield limiters lie inside

library cells. The existing cell internal diagnosis methods work well when only

combinational test patterns are used, while the accuracy drops dramatically with multi-

cycle test patterns. A method to accurately identify the defective cell as well as the failing

www.manaraa.com

 v

5

conditions is presented. The accuracy can be improved up to 94% compared with about

75% accuracy for previous proposed cell internal diagnosis methods.

The next part of this dissertation addresses the throughput problem for diagnosing

a volume of failing chips with high transistor counts. We first propose a static design

partitioning method to reduce the memory footprint of volume diagnosis. A design is

statically partitioned into several smaller sub-circuits, and then the diagnosis is performed

only on the smaller sub-circuits. By doing this, the memory usage for processing the

smaller sub-circuit can be reduced and the throughput can be improved. We next present

a dynamic design partitioning method to improve the throughput and minimize the

impact on diagnosis accuracy and resolution. The proposed dynamic design partitioning

method is failure dependent, in other words, each failure file has its own design partition.

Extensive experiments have been designed to demonstrate the efficiency of the proposed

dynamic partitioning method.

www.manaraa.com

 vi

6

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER 1. INTRODUCTION ..1

CHAPTER 2. REVIEW OF FAULT DIAGNOSIS ..4
2.1 Fault Models for Diagnosis ..4
2.2 Review of Logic Diagnosis Algorithms ...6

2.2.1 Cause-Effect Diagnosis ..6
2.2.2 Effect-Cause Diagnosis ..8
2.2.3 Multiple Faults Diagnosis ...10

2.3 Review of Cell Internal Diagnosis ..18
2.3.1 Logic Level Cell Internal Diagnosis ...19
2.3.2 Physical Level Cell Internal Diagnosis ..24

2.4 Logic Diagnosis Performance Improvement ..27

CHAPTER 3. DIAGNOSIS OF CELL INTERNAL DEFECTS WITH MULTI-
CYCLE TEST PATTERNS ...33
3.1 Introduction ...33
3.2 Terminology ...36
3.3 Excitation Conditions Extraction ..37
3.4 Diagnosis Defective Cells for Multi-Cycle Patterns42

3.4.1 Problems of Identifying Defective Cells for Multi-Cycle
Patterns ..42
3.4.2 Proposed Diagnosis Methodology ..45

3.5 Experimental Results ..48
3.5.1 Experimental Results for Combinational Patterns49
3.5.2 Experimental Results for Multi-Cycle Patterns50
3.5.3 The Impact on Other Defect Types ..52

3.6 Conclusions...53

CHAPTER 4. STATIC DESIGN PARTITIONING TO REDUCE MEMORY
FOOTPRINT OF VOLUME DIAGNOSIS..55
4.1 Introduction ...55
4.2 Problem Formulation for Static Design Partitioning57
4.3 Static Design Portioning Algorithms for Logic Diagnosis61

4.3.1 Overall Block Level Diagnosis Flow ...61
4.3.2 Partitioning Algorithm ..63
4.3.3 Evaluating Design Partitions ..66

4.4 Experimental Results ..67
4.4.1 Results for ISCAS’89 Circuits ...68
4.4.2 Block Level Diagnosis Results on Industrial Designs73
4.4.3 Evaluation on Designs with Sequential Test Patterns77
4.4.4 Evaluation on Designs with Test Compression83

4.5 Conclusions...86

CHAPTER 5. IMPROVED VOLUME DIAGNOSIS THROUGHPUT USING
DYNAMIC PARTITIONING ..88
5.1 Introduction ...88

www.manaraa.com

 vii

7

5.2 Preliminaries ...91
5.3 Failure Dependent Design Partition Algorithm ..97

5.3.1 Overview of the Proposed Methodology ..98
5.3.2 Extract Clock Information ..99
5.3.3 Generation of the Initial Partition Based on Failing Bits101
5.3.4 Generation of the Final Partition Based on Passing Bits103
5.3.5 Layout-aware Partition Generation ..105

5.4 Experimental Results ..107
5.4.1 Partitioning Results and Impact on Diagnosis Results108
5.4.2 Comparison Experiments for Bridge Fault117
5.4.3 A Practical Example of Throughput Improvement118
5.4.4 Layout-aware Design Partitioning Results120
5.5.5 Design Partitioning Results with Test Compression122

5.5 Conclusions...124

CHAPTER 6. CONCLUSIONS AND FUTURE WORK ...125
6.1 Conclusions...125
6.2 Future Work ..127

REFERENCES ..129

www.manaraa.com

 viii

8

LIST OF TABLES

Table 1. Truth Table for G1 With An Internal Defect..43

Table 2. Design Characteristic Information ...49

Table 3. Diagnosis Results for Using Combinational Patterns ..50

Table 4. Diagnosis Results on Combination Cell Internal Defects51

Table 5. Diagnosis Results on Sequence-dependent Cell Internal Defects52

Table 6. Impact on Diagnosing Stuck-at Faults ...53

Table 7. Design Partition Results for ISCAS’89 Circuits ..68

Table 8. Prototype Diagnosis Results on ISCAS’89 Circuits ..71

Table 9. Simulation Score for Industry Designs ..73

Table 10. Design Information ..108

Table 11. Diagnosis Impact and Performance for the Proposed Method110

Table 12. Impact on Physical Bridge Faults ..117

Table 13. Partitioning Results for Layout-aware Design Partitioning121

Table 14. Throughput Improvement for Layout-aware Design Partitioning122

Table 15. Partitioning Results with Test Compression ..123

www.manaraa.com

 ix

9

LIST OF FIGURES

Figure 1. Types of Failing Patterns ..12

Figure 2. Overall Flow of Error Propagation Analysis ..15

Figure 3. Transistor Open and Bridge for 2-inputs NAND Cell..20

Figure 4. Examples for Transformation of Single Transistor ..21

Figure 5. Examples for Transformation of Parallel Transistors ..21

Figure 6. Complete Diagnosis Flow [32] ...22

Figure 7. Test Patterns for Consistency Check ..23

Figure 8. Effect-Cause Diagnosis Flow [9] ...28

Figure 9. Diagnosis Procedure Using Additional Dictionaries ..30

Figure 10. Example of Multiple Exercising Conditions ..38

Figure 11. Simulating with Two Capture Cycles...39

Figure 12. Backtracing Procedure..40

Figure 13. Inaccurate Excitation Conditions ...41

Figure 14. Different Faulty Values In Two Capture Cycles ..43

Figure 15. Partial Faulty Capture Cycle ..44

Figure 16. Generic Traditional Diagnosis Flow vs. Proposed Diagnosis Flow45

Figure 17: Design Partitioning ...60

Figure 18: Overall Flow of Block Level Diagnosis ...63

Figure 19: Proposed Design Partitioning Algorithm ...65

Figure 20. Diagnosis Accuracy for D1 ..74

Figure 21. Diagnosis Resolution for D1 ..75

Figure 22. Diagnosis Accuracy for D2 ..75

Figure 23. Diagnosis Resolution for D2 ..76

Figure 24. Design Partitioning with Sequential Pattern...78

Figure 25. Extra Failing Bits for Sequential Pattern ..79

www.manaraa.com

 x

1
0

Figure 26. Simulation Scores for ISCAS'89 Benchmarks with Sequential Patterns81

Figure 27. Extra Failing Bits for ISCAS'89 Benchmarks ..81

Figure 28. Simulation Scores for Industrial Design D3 with Sequential Patterns82

Figure 29. Simulation Scores for Industrial Design D4 with Sequential Patterns82

Figure 30. Tracing Fan-in Cone for an External Observation Point with Test
Compression Structure ...84

Figure 31. Simulation Scores for ISCAS'89 Benchmarks with Test Compression
Structure ..85

Figure 32. Simulation Score for D5 with Test Compression Structure86

Figure 33. General Procedure of Effect-cause Diagnosis Algorithm92

Figure 34. Initial Partition Based on Failing Bits ..96

Figure 35. Back Tracing for Sequential Pattern...97

Figure 36. Overall Flow of the Proposed Methodology ..99

Figure 37. Back Tracing with Clock Information ..100

Figure 38. Initial Partition Generation Procedure ..101

Figure 39. Procedure of Final Partition Generation Based on Passing Bits102

Figure 40. Example of Misdiagnosed Physic Defect Based on Partition106

Figure 41. Example of Layout-Aware Partition ..106

Figure 42. Distribution of the Suspect Count Change ...113

Figure 43. Distribution of the Partition Size for Single Stuck-at Fault114

Figure 44. Distribution of the Partition Size for Two Stuck-at Faults114

Figure 45. Distribution of the Partition Size for Three Stuck-at Faults115

Figure 46. Distribution of the Partition Size for Four Stuck-at Faults.............................115

Figure 47. Dynamic Partitioning Based Master-Slave Diagnosis Architecture118

Figure 48. Throughput Improvement Results ..120

www.manaraa.com

1

1

CHAPTER 1. INTRODUCTION

The manufactured dies usually are tested by a set of test patterns such as structural

test patterns to ensure the quality before being shipped out. Only those dies that pass all

the tests will be delivered to the customers. The dies screened out by structural testing

will not be thrown away. Instead logic diagnosis is typically performed on some or all

failing dies to determine the cause of the failure inside the failing die. The diagnosis

results generally can be leveraged by two applications. The first application is physical

failure analysis (PFA) in which a small number of failing dies are investigated to reveal

the physical evidences for the failures. The possible faulty locations and types identified

by logic diagnosis can lead to a faster and cheaper PFA process. Another application is

yield analysis over a large volume of diagnosis results to point out the systematic yield

issues during fabrication process without explicit costly PFA. Through statistically

analyzing the volume diagnosis information, the yield limiters can be learned, and then

the yield can be quickly ramped up by tuning the fabrication process parameters or

modifying the design rules and re-designing with new design rules.

Both the PFA and volume diagnosis based yield learning raises two essential

requirements for diagnosis algorithms:

 High diagnosis quality: The diagnosis quality usually is measured by two

metrics: accuracy and resolution. The accuracy describes the ability of the

diagnosis algorithm in finding the real defects, while the resolution defines the

capability of diagnosis algorithm in differentiating the ambiguity between the fake

suspects and the real defects. With low accuracy and resolution, the time for PFA

process for searching the defect locations becomes long and thus leads to

expensive PFA. Also for yield learning, the accuracy of the systematic yield

limiters heavily relies on the logic diagnosis accuracy and resolution on a volume

of failing dies.

www.manaraa.com

2

2

 High diagnosis performance: The performance for a diagnosis algorithm

includes the runtime and memory consumed by the diagnosis algorithm. The long

runtime of diagnosis can delay the PFA process. For volume diagnosis based

yield learning, the long runtime and large memory consumption will reduce the

number of failing dies processed within a given time and computational resources,

thus will slow down the yield limiter identification.

Following the Moore’s Law, the modern integrated circuit fabrication technology

keeps shrinking and it has advanced from 90nm to 65 nm and beyond. The smaller

feature size allows a single die to integrate thousands of millions of transistors. Both the

shrinking feature size and increasing design scale pose challenges for the conventional

logic diagnosis.

The first challenge is that for 65nm and beyond technology a large number of

manufacturing defects and systematic yield issues lie inside library cells. Conventional

logic diagnosis which only reports the faulty nets or cells may not be accurate enough for

both PFA and yield learning. The defect inside the cell should be identified for fast and

cheap PFA as well as successful and quick diagnosis-driven yield learning. Our first

research objective is to enhance the quality of logic diagnosis by accurately and

efficiently identifying the cell internal defects.

The second challenge is that the performance (runtime and memory consumption)

of the logic diagnosis algorithm is degraded due to the extremely large design, as both the

runtime and memory footprint of the conventional logic diagnosis algorithms are

proportional to the scale of the design. The longer runtime and the large memory

requirement can reduce the diagnosis throughput which is defined as the number of

failing dies diagnosed within a time and a given computational resource. The low

throughput can delay the PFA process and yield limiters identification, thus impact the

time-to-market. In this dissertation, the second objective of our research is to improve the

www.manaraa.com

3

3

performance of logic diagnosis, through reducing the runtime and memory consumption

for logic diagnosis algorithms.

The rest of the dissertation is organized as following. In Chapter 2, we briefly

review previous works including fault models used for fault diagnosis, fault diagnosis

algorithms, cell-aware diagnosis and performance improvement for fault diagnosis. In

Chapter 3, a method is presented to diagnose cell internal defects with multi-cycle test

patterns. Chapter 4 proposes a static design partitioning approach to reduce the memory

footprint of volume diagnosis. A failure-dependent dynamic design partitioning method

is proposed in Chapter 5. Finally Chapter 6 draws the conclusion.

www.manaraa.com

4

4

CHAPTER 2. REVIEW OF FAULT DIAGNOSIS

2.1 Fault Models for Diagnosis

In logic diagnosis, fault models are used to model the failure behavior caused by a

physical defect. Using logic level fault model can simplify simulating the fault effect

caused by the real defect. Based on the fault models, defects can be identified by logic

diagnosis. Fault models, such as stuck-at fault model, bridge fault mode, open fault mode,

transition fault model, path delay fault model and cell internal fault mode, are widely

used in current logic diagnosis procedures.

 Stuck-at fault model [1]

The stuck-at fault model has been used successfully for decades for describing the

permanent faulty behavior on a line in the circuit caused by the defect. With a

stuck-at fault on a line, the correct value on that line appears to be stuck at a

constant logic value, either 0 or 1, referred as stuck-at-0 or stuck-at-1. The stuck-

at-0 represents a short defect between the signal line and the ground line, while

the stuck-at-1 could represent a short defect between the signal line and the power

line.

 Bridge fault model [2][3]

The logic behavior of a short defect between signal lines is commonly represented

by the bridge fault model. The bridge fault model that models the logic values of

the shorted lines as logic AND or OR logic values of these two faulty nodes is

referred to as wired-AND/wired-OR bridge fault model. The dominant bridge

fault model was proposed to for the bridge defects in which one line is assumed to

dominate the logic value on the other line. Usually the bridge fault mode captures

the short defect between one signal line with another signal line instead of power

or ground line.

 Open fault model

www.manaraa.com

5

5

The open fault models the defect by assuming there is an interconnection on a

signal line. Usually the open fault can model defect such as electrical open, break,

and disconnected via in a circuit. Open fault can result in state-holding,

intermittent, and pattern-dependent fault effects which are more complex. Stuck-

at-0 open or stuck-at-1 open are often used in logic diagnosis.

 Transition fault model

The transition fault model [4] is used to model the delay fault that leads to the

transition from the gate input to its output falling outside the specified timing

limit. By the transition types there are two transition fault models: slow-to-rise

fault model and slow-to-fail fault model. The slow-to-rise (slow-to-fail) fault

assume that the transition from 0 to 1 (1 to 0) cannot reach the output within the

specified time.

 Path delay fault model

The path delay fault model [5] describes the delay defect along a set of predefined

structural paths. The path selected for path delay usually is a critical path

identified by timing analysis tool, which consist of an ordered set of gates. The

path delay fault can model the distributed small delay defects along the path by

summing up the delays of the gates.

 Cell internal fault model

Some fault models are proposed to describe the defects inside the cell. Usually

those fault models are similar to the fault models used for describing the defects

in inter-gates. Instead of modeling the defects between gates, the internal defect

models, such as stuck-at fault, stuck-open fault, resistive-open fault and

short/bridge, represent the internal defects existing between transistors.

The most widely used fault model for logic diagnosis is stuck-at fault model for

its simplicity. Using the stuck-at fault model to run the simulation for logic diagnosis, we

can first get a set of possible defective gates with stuck-at faults in its inputs or outputs.

www.manaraa.com

6

6

Based on the results, complex defects can be identified by applying more sophisticated

fault models such as bridge fault model and net open fault model.

For the logic diagnosis using stuck-at fault model, the diagnosis algorithms can be

classified into two categories. The first category is called cause-effect analysis in which a

pre-simulated fault dictionary for all the faults with all the test patterns and then the fault

dictionary is looked up to find a set of candidates that can best match the test fails by the

failing device observed on the tester. The second category is effect-cause analysis which

derives possible faulty locations by directly examining the failure syndrome of the failing

chips.

2.2 Review of Logic Diagnosis Algorithms

In this section, first we would like to review two basic logic diagnosis algorithms

using stuck-at fault model: cause-effect diagnosis and effect-cause diagnosis. Previous

works on diagnosing multiple defects will be further discussed in the rest of the

subsection.

2.2.1 Cause-Effect Diagnosis

The cause-effect diagnosis [6] algorithm first assumes if there is a fault in the

circuit what the failure syndrome would be. Usually a specific fault type such as stuck-at

fault is assumed to be the causes of the failure. A dictionary which records the responses

of all the assumed faults for all the test patterns is generated ahead of diagnosis by

intensively performing fault simulation. This dictionary also is referred as fault

dictionary. After the fault dictionary is built, the failure syndrome of the failing device is

examined using fault dictionary look-up. The fault whose test response best matches the

observed failure will be considered as the most likely fault candidate.

The time for constructing the fault dictionary equals to the time for fault

simulating all the test patterns for all the faults considered for the circuit, which is

acceptable as it is one-time cost prior the diagnosis. During the diagnosis, it is fast for just

www.manaraa.com

7

7

looking up the table to derive the fault candidates. However, for practical application the

cause-effect diagnosis algorithm could be limited by some problems. The first problem is

the dictionary size problem: it requires a large amount of storage for recording all test

response for all the faults with all the test patterns. Theoretically the size of the fault

dictionary is O(F∙V∙O), where is F is the number of faults in the circuit, V is the test

patterns used for testing and O is the number of observation points in the circuit (usually

this number is approximate to the number of scan cells). With the increasing size of the

design, this method will require extremely large storage thus becomes inapplicable. This

problem can be relived to some extent by using compaction and compression techniques.

Some works have been published to reduce the size of the fault dictionary. The

pass-fail dictionary is the simple way to reduce the dictionary size by using a single pass-

fail bit to replace the output response of the test vector [7]. Therefore the size of the fault

dictionary can be reduced to O(F∙V). However by doing this the resolution will become

worse as some faults become undistinguishable by only using pass-fail bits. In [7] this is

future improved by carefully selecting extra output responses for some test patterns such

that the resolution will not be impacted. Another method was proposed [8] to build small

fault dictionary by recording only the test responses of the failing patterns with the faults

detected by failing patterns instead of recording the test responses of all the test patterns

with all the faults. This can reduce the memory requirement without sacrificing

resolution. The size can be further reduced by recording only k failing test patterns at the

cost of slightly degrading the resolution. Researchers in [8], [9] proposed a technique to

compress the fault dictionary by using a multiple input signature register (MISR) to

generate a compressed fault signature. One problem for this method is two difference test

responses may be compressed to the same failing signature.

Another issue using the cause-effect diagnosis algorithm is that it may miss the

accuracy for some realistic defects which could not be modeled by stuck-at fault which is

used to the build the fault dictionary. Sometimes some realistic defects, such as stuck-

www.manaraa.com

8

8

open fault and bridge fault, may not behave as stuck-at fault. In [11], the realistic defects

are used to build the fault dictionary such that some defects which could not be modeled

by stuck-at fault will be considered. However since the number of realistic defects is

much larger than the number of stuck-at faults, it will increase the size of the fault

dictionary as well as the simulation time. Also the realistic defect should be carefully

extracted otherwise it will lead to inaccurate diagnosis results. Bridge faults [12] has been

targeted for building the fault dictionary, nevertheless, it still cannot cover all the realistic

defects and suffers from inaccurate results.

These two problems limit the cause-effect diagnosis algorithm in practical

application. Comparing with cause-effect analysis, the effect-cause is superior and widely

used in nowadays digital circuit diagnosis.

2.2.2 Effect-Cause Diagnosis

In contrast to cause-effect analysis paradigm, effect-cause diagnosis algorithms

directly derive the fault candidates from the failing responses by using fault simulation

technique without pre-simulating a table. Comparing with the cause-effect methodology,

effect-cause has several advantages:

 It requires less memory storage. As most of the memory for effect-cause is

consumed for simulating the circuit therefore it is applicable for practical use.

 No pre-assumed fault model. It does not pre-assume a fault model, thus it can be

used for diagnosis more realistic faults. Note that stuck-at fault model usually is

used for simulation and identifying the initial possible defective cells or locations.

Additional analysis using complex defect models such as bridge can be applied to

deduce the real physical defect types and locations.

One disadvantage for using effect-cause analysis is that it takes longer time to

diagnose the defect as the fault simulation process requires more runtime than the fault

www.manaraa.com

9

9

dictionary look-up. Before discussing the algorithms, we give some definitions of terms

as following:

 Failing Observation Point: An observation point (scan-cell or primary output) is

a failing observation point if there is a test pattern such that applying that pattern

the value on the observation point captured by the tester is different with the value

simulated using good circuit. It is also refereed as failing bit.

 Passing Observation Point: An observation point (scan-cell or primary output) is

a passing observation point if the values observed on the tester are identical with

good circuit simulation when applying all the test patterns. It is also referred as

passing bit.

 Failing Pattern: A test pattern is a failing pattern if one or more failing

observation points are captured on the tester when applying the pattern.

 Passing Pattern: A test pattern is a passing pattern if no failing observation point

is captured on the tester when applying the pattern.

The general procedure of effect-cause diagnosis algorithm if assuming single fault

in the circuit can be summarized as following:

 Step 1: Initial faulty candidates identification. In [13], the critical path-tracing

technique which was originally proposed for fast simulation [14] was applied to

logic diagnosis. For each failing pattern, it first simulates the pattern on good

circuit, and then it backtracks every failing bit to identify the faults in the fan-in

cone of the failing bit that can account for the failure. A fault that is considered as

an initial candidate if it is in the fan-in cone of the failing observation point, and it

has a parity-consistent path to the failing observation point. If assuming single

fault then the intersection of all the fault candidates for all the failing bits is

considered as the final candidate set. Otherwise, the union will be the final

candidate set.

www.manaraa.com

10

1
0

 Step 2: Failing pattern validation. The initial candidates obtained at the Step 1

may contain too many suspects that need be pruned. In this step, all the initial

candidates are fault simulated with all the failing test patterns. A candidate can

explain a failing pattern if fault simulating the candidate with the failing pattern

the test response matches the failure syndrome. If only part of the failing

observation points matches the failure syndrome the candidate is considered as

partially matching the failing pattern. The candidate can be weighted by the

number of fully explained and partially explained failing patterns. A candidate

that cannot explain any failing pattern will be discarded.

 Step 3: Passing pattern validation. The initial suspects can be further refined by

simulating the passing test patterns. Intuitively a real defect should not produce

any failing bits when simulating a passing pattern. Therefore, a candidate will be

removed from the suspect set if it fails at a passing pattern.

With the increasing design complexity and shrinking feature size of transistors, it

brings several issues for single fault assumption. First is that more and more realistic

defects cannot be modeled by simple single fault model. For example, single defect can

manifest its behavior as multiple faults. Also the defect density increases as the process

technology advanced. Experiments in [15] show that if the diagnosis assuming single

stuck-at fault in the circuit more than 41% defects cannot be correctly found. In order to

have good diagnosis quality, it is necessary to develop some diagnosis algorithms to cope

with multiple faults in the circuit. Next we would like to briefly review some previous

works on multiple faults diagnosis.

2.2.3 Multiple Faults Diagnosis

The challenge for directly address the multiple faults problem is the error space

grows exponentially, as shown in [16]: error space = (# of lines)
(# of faults)

, where “# of

lines” is the number of signal lines in the circuit and “# of faults” is the number of faults

www.manaraa.com

11

1
1

that we assumed in the circuit. In addition, multiple faults may be activated at the same

time and the fault effect of one fault may be interfered or cancelled by other faults, which

makes the multiple-fault diagnosis more difficult. Several works have been proposed to

handle the multiple faults by using some heuristics or assumptions to reduce the

complexity of above mentioned challenges.

2.2.3.1 Xlists Based Multiple Fault Diagnosis

The ideal proposed in [17] using Xlist to refine a region with faults that can

possible contribute the errors is based on the assumption that the faults are locally

bounded and presents themselves in clusters. This method addresses the first problem by

reducing the search space thus it has good runtime. However, when the faults are

unrelated and scatter in the circuit this method may not effective to find the faulty

locations.

2.2.3.2 Single-Location-at-a-Time (SLAT)

In the previous work [15], [18], the authors assume that there are some patterns

that cause only a single fault to produce fault effect at some observation points. Based on

this assumption, it first finds out single-fault locations that could explain one or more

failing test pattern. It shows that most of the failing patterns are indeed SLAT patterns,

even though there possible are multiple faults in the circuit. The candidates found in the

first phase have the property that it can explain at least one failing patterns. After find

these candidates, the algorithm tries to find a minimum set of candidates that could

explain all the failing patterns. The set of candidates that explain all the failing patterns is

called multiplet. The results in [18] shows that it can handle complex defects like bridge

faults. The algorithms however could not correctly identifying 7% of the cases in which

either there is no SLAT pattern or the size of the multiplet is too large. In reality, this

algorithm may lose accuracy if few SLAT patterns pattern exist or SLAT patterns are

actually produced by multiple defects.

www.manaraa.com

12

1
2

2.2.3.3 Incremental Diagnosis and PO Partition

The work in [19], [20] handles multiple faults by an incremental simulation-based

method and failing outputs partitioning without explicitly considering the behavior of

multiple faults.

The failing patterns are firstly classified into three types, as shown in Figure 1:

 Type 1: SLAT pattern, i.e., only one fault can have its fault effects being

observed.

 Type 2: A failing pattern activates multiple faults, but fault effects of them are not

correlated.

 Type 3: A failing pattern activates multiple faults, and the fault effects may affect

each other.

Figure 1. Types of Failing Patterns

Type 1 failing pattern can be handled by most of the SLAT based logic diagnosis

algorithms. The method proposed in [19], [20] tries to address the Type 2 and 3 failing

patterns which activate multiple faults. For Type 2 failing pattern, a failing PO

partitioning method was proposed and in each partition is Type 1 case which can be

easily diagnosed. The failing PO partitioning algorithm can be summarized as following:

1. Backward tracing for each failing PO to find reachable faults.

2. Construct a graph, in which the vertex is a failing PO and an edge exists between

two vertices (failing POs) if they can reach some common faults in a failing

www.manaraa.com

13

1
3

pattern. The weight of an edge is the number of failing patterns for which the two

vertices (failing POs) have common reachable faults.

3. Partition the graph by greedily removing the lowest weight edges.

4. Diagnosis each groups of failing POs separately.

To handle the Type 3 failing pattern, based on the observation that Type 1 failing

pattern always exists even if multiple-fault failure responses are also present, the

proposed first use Algsingle algorithm [21] trying to find some candidates that perfectly

some failing patterns, and then iteratively group candidates to explain the rest of the

unexplained failing patterns by n-perfect algorithm. Next are the detail of some

definitions and these two algorithms.

n-perfect candidate: n-perfect candidate is a group of n faults such that by

injecting the group of faults into the circuit we can perfectly explain some failing

patterns.

The Algsingle algorithm can be explained as following:

1. Initialize the fault candidate list using critical path-tracing.

2. Simulate each fault in initial candidate list to see if it can perfectly explain any of

the failing patterns. If so assign it a weight equal to the number of patterns it

explains on the current list. Store the candidate fault with the greatest weight, and

removing the failing pattern explained by it.

3. Sort candidate faults using their weights obtained in Step 2. Report the possible

candidates.

4. For circuit with multiple defects, these 1-perfect candidates may not be able to

explain all the failing patterns. Then n-perfect algorithm is used to incrementally

find n-perfect candidates to explain the rest of the failing patterns.

n-perfect algorithm:[19], [20]

5. Find a 1-perfect fault candidate using Algsingle algorithm, remove the explained

patterns.

www.manaraa.com

14

1
4

6. Inject each n-perfect candidate into the circuit and perform step 3 and 4 until all

n-perfect candidates have been tried.

7. For each unexplained failing pattern, initialize the possible fault candidates.

8. Perform Algsingle algorithm on the modified circuit and construct (n+1)-perfect

candidates based on the targeted fault model.

9. Determine the (n+1)-perfect candidates that can further explain some failing

patterns which are not explained before.

10. Rank and weight the (n+1)-perfect candidates based on failing and passing

information. Eliminate those failing patterns that can be explained by (n+1)-

perfect candidates from the failing pattern list. Increase n by 1.

11. Repeat steps 2-6 for the remaining unexplained failing patterns until no fault

candidate can be found, or until all failing patterns have been explained.

12. Post process all possible k-perfect candidates (1≤k≤n) to remove the candidates

cause many passing patterns to fail.

2.2.3.4 Error Propagation Analysis

The authors in [22][23] developed a multiple defects diagnosis methodology

including a defect site identification and elimination method, a path-based defect site

elimination method and a defect site selection and ranking method. It has the capability to

handle various defect behaviors and arbitrary failing pattern characteristics. The overall

flow of the proposed method is given in Figure 2.

The initial candidates are obtained through path-tracing. Then a fault site will be

eliminated from the candidate set if it will cause passing observation point to fail for

some failing patterns. This is done by performing conservation implication analysis on

passing observation points for all the failing patterns. Initial candidates are further

collapsed by using structural equivalence information.

www.manaraa.com

15

1
5

Before analyzing the initial candidates, three definitions are given to describe the

ability for some candidate to propagate the error to some observation points:

 For pattern tk, if site fi propagates to an observation point outj if all the side inputs

of on-path gates have fault-free values, fi is said to “output-explain” outj for tk.

 For patter tk, if site fi propagates to an observation point outj if some side inputs of

on-path gates have fault values, fi is said to “partially output-explain” outj for tk.

 Let fi -Ji be the longest sub-path such that fi can propagate to Ji when all the side

inputs of on-path gates have fault-free values. The remaining sub-path Ji - outj is

called the “under-explained” sub-path.

Defect site identification

and elimination

Structural based fault

collapsing

Path-based site

elimination

Site selection and

ranking

Final ranked candidate

sites

Test Response
Gate-level

netlist

Figure 2. Overall Flow of Error Propagation Analysis

Based on the definitions, fault sites can be grouped:

www.manaraa.com

16

1
6

 For each failing pattern and each defect site that explains any observed failing

observation points, we find the “out-explained” outj and also the “under-

explained” sub-path for each site.

 Group the sites that have the same “out-explained” observation points and the

same “under-explained” sub-path together.

Then fault site set are selected if it out-explains the most observed failing points

that have not been explained.

Finally the fault site sets are ranked according rules:

 Rule 1: A site that is an element of a smaller site set is ranked higher

 Rule 2: if rule 1 results in a tie, a site that output-explains more failing

observation points is ranked higher.

 Rule 3: if rule 2 results in a tie, randomly choose one site.

One drawback of this method is the fault elimination step may not be able to

eliminate many fault sites, which may increase the effort the following analysis steps.

2.2.3.5 Diagnosis Multiple Faults using Fault-Tuple

Equivalence Trees (FTET)

A method [24] for diagnosing multiple arbitrary faults has been proposed recently

without assuming fault models. In the given method, techniques for construction and

scoring of fault-tuple equivalence trees are introduced to choose and rank the final

candidates so as to handle multiple-fault mask and reinforcement effects. For each failing

pattern, the method traces from all the failing observation points to the primary inputs to

construct a FTET. For each failing test pattern, the initial fault-tuple is a set of all the

failing observation points. Starting from the initial fault-tuple, the backward tracing tries

to find more fault-tuple that could explain the failing pattern.

www.manaraa.com

17

1
7

After the FTET for a failing pattern is built, the faults in the FTET are given a

score to estimate the capability for explaining the failing pattern. Then fault sites are

selected based on the score to prune the FTET.

The experimental results show the method gives a good accuracy and resolution.

However in the experiments randomly distributed multiple faults are injected which may

not prove the capability of the proposed method in diagnosing multiple faults which are

bounded in a local region which is common for a real single defect such as open or bridge

defect.

2.2.3.6 Diagnosis Multiple Physical Defects Using Logic

Fault Models

X. Tang and et al. [25] recently proposed a method to improve diagnosis results

for multiple physical defects by analyzing the relations among the initial logical suspects

and carefully choosing diagnostic metrics. Also a new set covering procedure and a

ranking methodology for candidate sets were developed.

Diagnostic metrics are defined to measure how good a fault can explain the

failures:

 SFTF: the number of failing bits that appear in both the test response of fault

simulation and the failure that observed on the tester.

 SFTP: the number of observation points that fail in the fault simulation but pass

on the tester.

 SPTF: the number of observation points that pass in the fault simulation but fail

on the tester.

The method first identifies a set of initial stuck-at fault based on critical path

tracing [14] and SLAT [18] patterns. SFTF, SFTP and SPTF are calculated for each

suspect on the initial candidate list.

www.manaraa.com

18

1
8

The next step is to derive physical defect from the obtained logic faults so as to

explain the failing bits of the rest of unexplained patterns. Stuck-at faults that on the same

interconnect net may be combined as a net-open fault, and faults that on the inputs and

outputs of a gate may compose a cell internal fault. Bridge faults also can be derived

from two or more logic locations that satisfy the excitation and propagation conditions. A

metric, which is defined as σ’T = sum of min(SFTF, SFTP) over all non-Type-3 failing

patterns [19]. It is called a seed fault is σ’T of the fault is 0. For a derived physical defect,

only the failing patterns explained the component seed faults are counted. The final

suspect selection is based on the Diagnosis Score = #EFP - α×#PMP, where #EFP is the

number of explained failing patterns and #PMP is the number of passing mismatch

patterns. Experimental results demonstrated the method can accurately identify the defect

locations as well as the physical defect type.

2.3 Review of Cell Internal Diagnosis

Conventional logic diagnosis can successfully determine the most likely locations

and types of the defects by using effect-cause analysis. The location reported by the

diagnosis tool usually is the net (nets for multiple faults) that connected to the input or

output of gate. With the increasing complexity of the design along with the shrinking

manufacturing size, a significantly number of manufacturing defects and systematic yield

limiters reside in the internal of the gates. Therefore it is necessary for diagnosis tool to

have the capability in finding the defects inside the cell. For physical failure analysis, the

more detail results can accelerate the whole analysis process. Also finding out the cell

internal detects can facilitate statistical yield learning to point out the systematic defects

inside the library cells.

In this section, some previous works on cell internal diagnosis are briefly

reviewed. The previous proposed cell internal diagnosis algorithms can be classified into

www.manaraa.com

19

1
9

two general categories [35]: logic level [26], [27], [28], [29], [30], [31], [32], [33] and

physical level [34], [35].

2.3.1 Logic Level Cell Internal Diagnosis

The defect models used for cell internal diagnosis usually are transistor stuck-

open or transistor bridge defects extracted from the logical structure of the library cell

without considering the real physical information of the cell. Below Figure 3 gives two

examples for transistor stuck-open and bridge defects respectively for 2-inputs NAND

library cell. The first example gives a stuck-open defect at the source of p-transistor T1.

Because of this defect, the transistor T1 cannot be charged properly when A = 0 and B = 1

and then the value on Z depends on the previous value on Z. This effect will not manifest

itself as a stuck-at fault on input pin A or output Z thus using traditional stuck-at fault

model based diagnosis may not find the internal defects. The second example presents a

bridge fault between the source and drain of transistor T2. When A = 1 and B = 1, the

value of the output Z is undetermined because of the short between source and drain of

transistor T2. The traditional logic diagnosis which can only locate the possible locations

of the defective library cells and cannot reach the internal defects will become inaccurate.

Li and et al. [26], [27], [28] first developed a methodology to diagnosis resistive-

open and stuck-open faults resides in internal transistors of the CMOS cell. Stuck-at fault

mode first is used to find out the possible gates with stuck-at faults that could explain all

the failing patterns. Then all the candidates obtained from logic diagnosis are fault

simulated and for each candidate a fault signature (FS) table is generated. The FS table

for a fault stores the failing pattern and failing bits when the fault is injected and

simulated. Also logic simulation is performed and for each candidate the gat-input

sequence (GIS) table is built in which all the input and output combinations of the

applied test patterns are stored. For each library cell, a predefined excitation condition

(EC) table is used to describe which input combination can excite which resistive open

www.manaraa.com

20

2
0

and stuck-open defects of the transistors inside the cell. Put these three tables together,

we can know the possible stuck-open/resistive open detects (detected by the input

combinations and sequences of the failing patterns) and also the failing bits caused by the

present of each possible stuck-open/resistive open defect. Then final step is to greedily

find a minimum set of stuck-open/resistive defects that can perfectly matching all the

failing bits of the failing patterns.

A

B

Z

T1 T2

T3

T4

Open

A

B

Z

T1 T2

T3

T4

Bridge

Figure 3. Transistor Open and Bridge for 2-inputs NAND Cell

In order to avoid manually build up an excitation table for every type of library

cells, researchers in [29], [30], [31] proposed a stuck-at fault model based method to

diagnosis transistor stuck-open and transistor bridge defects. The first step of the

proposed method is performing single stuck-at fault diagnosis. If the identified stuck-at

faults can perfectly explain the failing patterns without passing mismatch, those faults are

real stuck-at faults. Otherwise the gates with diagnosed stuck-at faults on the inputs or

outputs are selected for future cell internal diagnosis. Instead of building an excitation

table for each stuck-open/bridge fault for each library cell, the presented method

transforms the gate from transistor level to gate level such that the stuck-open/transistor-

www.manaraa.com

21

2
1

bridge defects can be converted into stuck-at/gate-bridge faults. After the gate

transformation, new patterns are constructed from the previous and current input values

of the transformed gates. For every pattern that detects that fault, the previous applied

pattern is found. Then two consecutive patterns that present on the transformed gate are

used to form a new pattern. Finally, the logic stuck-at/bridge diagnosis tool is applied on

the transformed gates. And the stuck-at/bridge faults will be identified which can be

mapped to stuck-open/bridge defects in the transistor level of the original gates. By doing

so, the transistor stuck-open and bridge defects can be processed using any logic

diagnosis tool. Below gives an example how a transistor can be converted to a gate.

drain

source

A

A source

drain drain

source

A

A source

drain

Transformation for n-transistor Transformation for p-transistor

Figure 4. Examples for Transformation of Single Transistor

drain

source

A B

drain

A source B source

drain

source

A B

drain

A source B source

Transformation for parallel n-transistors Transformation for parallel p-transistors

Figure 5. Examples for Transformation of Parallel Transistors

www.manaraa.com

22

2
2

Figure 4 gives the replacement of n/p-transistors. For the n-transistor, the

replacement can guarantee that a zero voltage from the source will be transmitted to the

drain when A = 1 and the values on the source and drain are equal. It is similar for the p-

transistor. Following the same logic, the Figure 5 shows the replacement for two parallel

connected n/p-transistors.

Inject stuck-at faults at the

boundaries of all cell instances

Simulate one failing pattern

Update the list of suspect cells

and collect input conditions

More Failing

patterns

Simulate a sub-set of passing patterns and

collect input conditions of suspect cells

Discard cells with inconsistent

input conditions

For remaing suspect cells, match the

input conditions with fault dictionary

Diagnosis Result

Yes

No

Figure 6. Complete Diagnosis Flow [32]

www.manaraa.com

23

2
3

The work in [32] presents a mix-level diagnosis technique, which first performs

diagnosis at logic level and then performs transistor-level analysis to locate defect at

transistor level. The overall of the proposed mix-level diagnosis flow is given in Figure 6.

All Tests

Passing

Tests

Failing

Tests

Remaining

passing tests

Tests that do not

excite the defect

Patterns used for

consistency check

Figure 7. Test Patterns for Consistency Check

For each failing pattern, a number of suspect with stuck-at fault are identified

which can explain that failing pattern. The suspect could potentially have cell internal

defects and should be future checked. In order to find the possible internal defects in each

suspect, the input conditions of the suspects are collected for that failing pattern. Those

input conditions can determine a subset of internal defects that are detected by the input

combinations. After diagnosing all the failing patterns, the suspects with stuck-at faults at

the cell boundary can be obtained. A sub set of passing patterns are selected for further

consistency check. Figure 7 shows the classification of all test patterns. If a stuck-at fault

injected at the output of the suspect cell, then the internal defect was not excited on that

test. Such passing pattern should be used for consistency check to remove some internal

www.manaraa.com

24

2
4

defects. The input combinations on the suspect cell are collected for all the selected

passing patterns. With the failing input conditions and passing input conditions, the

internal defect can be deduced. This is done by matching the pre-built switch level fault

dictionary for the library cells.

The transistor level fault dictionary for each cell type stores the fault signatures

for each internal defect for a giving input combination. The cell internal fault models

involved include stuck-at fault mode, stuck-open fault model, and bridge fault model. All

these fault models are based on the logic structure of the library cell. The inputs are

exhaustively simulated for each internal defect, and its responses are recorded. Then

together with the passing conditions and failing conditions, the most possible internal

defects can be identified.

2.3.2 Physical Level Cell Internal Diagnosis

The cell internal diagnosis results based on the defect models extracted from the

logic level of the library cells may not accurately describe the real possible defects. Also

some unknown defects may not be presented by the logic level defect models. All these

can lead to inaccurate diagnosis results. In order to overcome this drawback, some

previous works [34], [35] have been proposed in which physical information of the

library cell is involved to more accurately capture the potential defects.

In [35], a fast cell internal diagnosis was proposed. The diagnosis method is based

on the assumption that the excitation of a defect inside a cell is highly correlated to the

logic values at the input pins of the cell. The excitation condition along with the SPICE

or switch level simulation can determine the defect inside the cell. It pointed out that

simply extracting the excitation condition from the failing patterns and passing patterns

using the technique in [32] was able to correctly identify the defective cell in only 25% of

the cases. This is mainly due to the multiple excitation conditions in the test pattern. With

multiple excitation conditions, it is not easy to decide which excitation condition is the

www.manaraa.com

25

2
5

true excitation condition. Some excitation conditions may excite the defect but not

propagate the fault effect. The multiple excitation conditions mainly come from three

situations:

 Multiple cycles of the capture clock. Some faults many need multiple capture

cycles to be active and detected. The multiple capture cycles in a test pattern can

lead to multiple excitation conditions.

 Mixture of leading edge and failing edge in the design. When simulating test

patterns for design with leading edge and trailing edge, a clock cycle is split into

multiple simulation frames which can lead to multiple excitation conditions.

 Clock signal feeding into the system logic. The fault effect in the design can be

captured by leading edge scan cells or observed at primary outputs when clocks

are OFF. This is another set of exercising condition.

The works in [35] proposed an algorithm to heuristically the true failing and

passing excitation conditions for each candidate cell when test patterns have multiple

excitation conditions. Some terms are defined before giving the detail of the algorithm:

 Observable Passing Pattern: An observable passing pattern is defined with

respect to a candidate defective library cell. If a passing pattern detects a stuck-at

fault on the cell output pin then it is called an observable passing pattern for the

cell.

 Exercising Condition: An input combination of a library cell in the design during

the capture phase of a test pattern.

 Failing Exercising Condition: An exercising condition of a defective cell that

actives the cell internal defect and propagates the faulty value to the cell output

pins.

 Passing Exercising Condition: An exercising condition of a defective cell that

does not excite the cell internal defect, or does not propagate the faulty value to

the cell output pins.

www.manaraa.com

26

2
6

The algorithm first extracts the Exercising Conditions Collection (ECC) for all the

failing patterns and observable passing patterns. The ECCs are used to determine the

actual failing and passing excitation conditions by using the following heuristic:

1. All the excitation conditions are divided into three categories. Put excitation

conditions that present only in failing pattern ECCs into failing excitation

condition category. Excitation conditions that present only in observable passing

patterns ECCs are passing excitation conditions. The rest of excitation conditions

are undecided and will be processed in the following steps.

2. For failing pattern ECCs, if it contains exactly one undecided exercising

condition and no failing excitation condition, the undecided excitation condition

will be labeled as failing excitation condition.

3. For observable failing pattern ECCs, if it contains exactly one undecided

exercising condition and no passing excitation condition, the undecided excitation

condition will be labeled as passing excitation condition.

4. If there are still some undecided exercising conditions, choose one which is

associated with the largest number of observable passing patterns and put it into

passing excitation condition category.

5. If any undecided exercising condition was converted to a passing condition in

Step 4, then go back to Step 2, otherwise terminate.

The results on controlled experiments show that the excitation condition

extraction algorithm can correctly identify the passing and failing excitation conditions

for 94% of the cases. For the remaining 6% of cases, a majority of failing and observable

passing patterns have identical set of exercising conditions in which the method cannot

handle.

www.manaraa.com

27

2
7

2.4 Logic Diagnosis Performance Improvement

A good logic diagnosis algorithm should not only accurately point out the location

of the defects, but also produce the results within a reasonable short time with a

reasonable amount of memory. This becomes more important when diagnosing a volume

of failing devices. The throughput of volume diagnosis is defined as the number failing

dies that could be processed within a time frame and with limited computational resource.

Usually the time and space complexity of logic diagnosis (effect-cause) algorithm are

linear to the number of gates in the circuit under diagnosis (CUD) as fault simulation and

logic simulation is intensively used. With the increasing scale of the design the runtime

and memory consumption keep growing which would lead to large impact on the

throughput, thus the silicon debugging and yield learning will be slowed down.

In this section, several previous works on improving the performance of the logic

diagnosis based on effect-cause paradigm will be briefly introduced [8], [9], [36], [37],

[38].

2.4.1 Circuit Partitioning [36]

The method presented in [36] reduced the number of simulation events required to

diagnose a fault by logically partitioning the circuit into sub-circuits. The sub-circuits that

include the potential defects are further partitioned into smaller sub-circuits until the

desired resolution is met. The basic idea of the method is incrementally searching sub-

circuits which could produce fault effects and the faults effects can be propagated to the

failing primary outputs when the failing patterns are applied. Those sub-circuits could

potentially contain the real defects that causing the failure.

The experiments were performed on single-stuck at fault and bridge fault. The

results show the method has good diagnosis resolution and accuracy, and could reduce

the number of faults that need to be simulated. However, this method may not be

inapplicable for realistic defects which have multiple faulty locations. The reduction ratio

www.manaraa.com

28

2
8

computed in the experiments assumed that all the faults should be simulated which might

not be fair as the faults can be pruned by some techniques such as critical path tracing.

And also the full circuit is simulated which may still have problem when the circuit

becomes large.

2.4.2 Fault Dictionaries Based Methods to Accelerate

Effect-Cause Diagnosis [8], [9], [37]

We know that cause-effect diagnosis paradigm is impractical for diagnosing large

designs as the fault dictionary pre-built is too large to be accepted. However, one can

build a fault dictionary of small size whose memory overhead is reasonable to speed-up

the effect-cause diagnosis procedures [8], [9], [37].

Figure 8. Effect-Cause Diagnosis Flow [9]

Start

Pick a failing

pattern p from G
Back tracing

Fault

simulation

Remove p

from G

G empty? Minimum set

covering

Simulate passing

patterns
Rank the

candidates

End

Phase 1

Phase 2

www.manaraa.com

29

2
9

The effect-cause algorithm used in the previous works [8], [9], [37] has two

phases as shown in Figure 8. In the first phase, critical-path tracing is employed to find

the initial candidates and fault simulation is performed for the initial faults to further

prune them. The second phase first using minimum set covering algorithm to find some

sets of faults such that each set can perfectly explain all the failing patterns. These sets

are simulated under the passing patterns and then ranked according the passing pattern

mismatch results. Two runtime intensive works are involved for the described diagnosis

procedure. The first one is the time for back tracing to find a set of initial candidates and

fault simulating all the failing patterns with the obtained initial candidates. The second

one is the runtime for the second phase for simulating all passing patterns.

In [9], a method was proposed to build a small dictionary used for determining the

initial candidates that explain a failing pattern such that the CPU effort spend on back

tracing can be avoided. Instead of recording the test response for each fault for each test

pattern, a unique test response signature is stored by feeding the response into a 32-bit

MSIR. Then the number of bits used to store the signatures for all the faults is 32×U×F,

where U is average number of unique signatures for each fault and F is the number of

faults. Besides this, for each fault the clocks which are used to capture the fault effects of

that fault are stored. Then total fault dictionary size is 32×U×F + C×F if there are C

clocks. Then in the first phase, the initial candidates are obtained by looking up the fault

dictionary instead of critical path tracing. It can reduce the runtime of the first phase in

two aspects: 1) backward tracing is not used and dictionary look-up is fast; 2) during fault

simulation the number of events triggered by the initial candidates obtained by fault

dictionary is typically much smaller than that by the initial candidates found through

critical path tracing. The second phase also can be improved by speed-up simulating the

passing patterns. For simulating a fault, by the fault dictionary we can first find a subset

of passing patterns that detect that fault. Therefore only a subset of passing patterns needs

to be simulated instead of all the passing patterns. The clock information previously

www.manaraa.com

30

3
0

stored can be used to further reduce the number of passing patterns. Only the passing

pattern which has at least one pulse clock for that fault is selected. The experimental

results show that it can speed up effect-cause diagnosis by up to 156X without losing

diagnosis accuracy.

NFB(Pi) ≤ NFB

Cands. From X-

algorithm

Filter Cands.

Using FBC

Filter Cands.

Using HFS

NFB(Pi) ≤ NFB

Cands. from

NFB dicitonary

Drop Cands. if in

FBC & minFB >

NFB(Pi)

Drop cands. if in

HFS but sig. does

not match

Simulate

Faults

Y

Y

N

N

Figure 9. Diagnosis Procedure Using Additional Dictionaries

While the method in [9] build the fault dictionary for all the faults may still

require a large amount of memory for large design, the method in [8] future improve it by

reducing the fault dictionary into a minimum size while still accelerating the effect-cause

diagnosis without diagnosis accuracy loss. It is observed that for a design 98% of the

failing patterns have 5 or less failing bits. Then a fault dictionary is used to store all

unique response for each fault with NFB failing bits or less. The dictionary is called NFB

dictionary. Since only the unique signatures for failing patterns with no more than NFB

www.manaraa.com

31

3
1

failing bits are stored, the memory consumption is dramatically reduced. The fault

dictionary can be further reduced by clustering faults in the fan-out free region (FFR) in a

group and storing the unique signatures for that group. After the fault dictionary is built,

to identify the initial candidates the fault dictionary is queried if the number of failing bits

for a failing pattern is less NFB, otherwise critical path tracing is invoked. The results

show that the speed of effect-cause diagnosis can be improved to 3.5X and the memory

reduction for storing the small fault dictionary is up to 27X comparing with [9].

Based on the NFB dictionary, the authors in [37] proposed two additional fault

dictionaries: Failing Bit Count (FBC) Dictionary and Hyperactive Faults Signature

(HFS) Dictionary. Two types of faults are defined: hypertrophic fault and hyperactive

fault, where hypertrophic fault is a fault that causes many failing bits for a failing pattern

and hyperactive fault is a fault with high number of simulation events. The FBC faults

will not be found by NFB which require critical-path tracing, and HFS faults can cause

lots of simulation events. Both FBC and HFS faults requires long simulation time. For

FBC Dictionary, a pair (fi, minFB(fi)) is entered for fault fi that meet too conditions: 1)

minFB(fi) ≥ MINFB; and 2) Av_Event(fi) ≥ MINEVENT, where MINFB = NFB+2,

AV_Event(fi) is the average number of events caused by fault fi, and MINEVENT is user

specified minimum average event count. The entry in the HFS Dictionary is a 32-bit

signature of a faulty test response and a set of associated faults.

Figure 9 gives the diagnosis flow based on the additional fault dictionaries.

Basically it tries to identify some hyperactive and hypertrophic faults which could

increase the simulation time by the FBC and HFS dictionaries. By doing this, the

simulation events during critical path-tracing and fault simulation. Together with NFB

dictionary, the proposed method can speed-up effect-cause diagnosis up to 13X by using

additional small size FBC and HFS dictionaries.

www.manaraa.com

32

3
2

2.4.3 Machine Learning Based

The method proposed in [38] tries to diagnosis failing die with compression

structures using machine learning techniques instead of conventional cause-effect and

effect-cause analysis paradigms. It is based on the observation that defects in the same

fault free region (FFR) have strong correlations in scan cells that capture the errors. Then

each FFR can be considered as class, and the task for diagnosing the failing dies turns out

to identify the FFR according the failing test response using classification methods. First

training is performed with compressed output responses that are produced by different

faulty circuits, where are done by injecting faults into each FFR (class) and simulating

them with the given test patterns. A widely used machine learning method SVM [39] is

employed to facilitate data training and classification. When diagnosing a failing flog, the

SVM takes the failing response as an input and classifies into a FFR which may best fit

for the test response. The experimental results show that the diagnosis success rate is

more than 90% for circuit with 50x compression ratio. One potential problem with this

method is that only single fault is considered and the present of multiple faults with fault

effect masking may cause a problem. Also the training time for very large design may

become extremely long.

www.manaraa.com

33

3
3

CHAPTER 3. DIAGNOSIS OF CELL INTERNAL DEFECTS WITH

MULTI-CYCLE TEST PATTERNS

In this section, we present methodology to accurately diagnose cell internal

defects when test patterns with multiple capture cycles are used [40].

3.1 Introduction

When a chip fails test, fault diagnosis [1], [18], [21], [41] can determine the most

likely faulty locations and fault types. Such information can be further utilized by yield

learning [42], [43], [44] or physical failure analysis (PFA) procedures to find the root

cause of the failure, and the yield can be improved by fixing the yield limiters. In order to

speed-up PFA process or accurately learn the systematic yield issues, the faulty locations

and fault types produced by fault diagnosis should be as close as possible to the real

defect.

Traditionally fault diagnosis focuses on the defects that are present on the pins of

a library cell or the interconnecting wires between library cells. We refer to these

techniques as gate-level diagnosis techniques [1], [18], [21], [41]. With the integrated

circuit manufacturing technology advancing to 65nm and smaller, there are a significant

number of manufacturing defects and systematic yield limiters inside library cells [35]

which are more complex than primitive gates. If a die fails due to cell internal defects, it

is important to know the exact faulty locations inside the library cell. With such more

accurate information, PFA process can be accelerated since fewer candidate locations are

examined, and thus the overall cost of PFA is reduced. Furthermore, knowing the cell

internal defect also greatly helps in collecting defect statistics that can point to systematic

yield limiting issues in library cells. In contrast to gate-level diagnosis, the diagnosis

technique used to determine the defects inside a cell is referred to as cell internal

diagnosis.

www.manaraa.com

34

3
4

The existing works on cell internal diagnosis can be classified into two categories.

The first category assumes some defect models in the transistor-level description of the

cell, and then translates the transistor-level defects into gate-level defects [30], [31], [45].

By doing so, the conventional gate-level diagnosis tools can still work based on the

converted gate-level net lists and the effort for developing new cell internal diagnosis

techniques can be saved. One disadvantage of these techniques is that the success for

identifying the real defects depends largely on the accuracy of the modified library cell

model in representing all the realistic cell internal defects. In general, the model can

cover switch-level logic defects but not sufficient for transistor-level physical defects.

The second category of cell internal diagnosis is referred to as excitation

condition based diagnosis which does not assume any specific defect model [32], [33],

[35], [46], [47]. It is based on the assumption that the excitation of the cell internal defect

is highly related to the logic values at the input pins of the cell. In these procedures, first

defective cells are determined by classical gate-level diagnosis techniques. Then the

failing excitation conditions and passing excitation conditions for the cells are extracted

from the test patterns [35]. The failing excitation conditions are the logic value

combinations on the inputs of the defective cell that can activate the internal defects, and

propagate the effects to the cell outputs. The passing excitation conditions are the logic

values on the inputs that cannot excite or propagate the internal defect to the cell outputs.

With such extracted excitation conditions, the internal defect can be determined either

through simulating the candidate cell in SPICE [32], [48] or matching with a pre-built

fault dictionary [46]. Compared to the first category, the excitation condition based

diagnosis has more accurate defect localization and is widely used in industry.

The accuracy of the excitation condition based diagnosis depends largely on two

key factors: the accuracy of finding the defective cell and the accuracy of the extracted

excitation conditions. Both of the factors turn out to be non-trivial tasks when the test

patterns have multiple capture cycles. Test patterns with multiple capture cycles are used

www.manaraa.com

35

3
5

to detect defects such as transistor stuck-open and timing related defects as well as to

reduce pattern counts to achieve desired fault coverage. For excitation condition

extraction, it is pointed out in [35] that the accuracy is surprisingly low (only about 25%

cases can be correctly diagnosed) if one simply takes the binary logic values on the input

pins of the defective cell from the test patterns, which is referred to as passive excitation

condition extraction. The main problem is that the fault site can be exercised multiple

times during the capture phase [35]. An active excitation condition extraction algorithm

was proposed in [35] to improve the accuracy. The results showed that the correctly

diagnosed cases can go up to 94% after using the active excitation condition extraction

method. However, there are remaining 6% of cases for which diagnosis was

unsuccessful, which leaves us room to improve. What’s more, for multi-cycle test

patterns, the fault sites can be exercised more times than the single cycle test patterns,

which can make it harder to determine which exercising condition is the real excitation

condition. Experimental results presented show that it resulted in reduction of diagnosis

accuracy obtained by procedure of [35].

In addition, the accuracy of finding the defective cell remains challenging when

test patterns have multiple capture cycles. Experimental results on several industrial

designs show that in about 24%~40% of cases the defective cell cannot be found by the

procedures in [35] when multi-cycle patterns are used. Typically gate-level diagnosis

techniques use stuck-at fault model to identify the defective locations. The simulation

responses based on stuck-at fault model are compared with the responses observed on the

tester. The better matching implies that the candidate faulty site is more likely to be the

real defect. For cell internal defects, this is valid for most of the cases with single cycle

test patterns as the defect behaves as either stuck-at-0 or stuck-at-1 within one cycle.

However, when the test pattern has more than one capture cycle, the assumption that the

defect behaves as stuck-at fault for all cycles becomes less likely [49]. This is due to the

www.manaraa.com

36

3
6

fact that internal defects can be excited at different cycles by different input values and

each excitation may produce different faulty values.

In this chapter, we propose a methodology to accurately diagnose cell internal

defects when tests with multiple capture cycles are used. The main contributions of this

work are:

 Improving the excitation conditions extraction.

 Proposing a method to accurately find the defective cell when multi-cycle test

patterns are used.

To simplify our explanation, our library cells contain single logic gate only in the

examples used in this chapter. We use terms gate and cell interchangeably. Our solutions

should not be viewed as limited to single logic gate library cells only. The designs used in

our experiments do include library cells with complex logic gates.

The rest of this chapter is organized as follows. In Section 3.2 we first define

some terminologies used in this chapter. Section 3.3 describes the problems of excitation

conditions extraction and a method to precisely find the excitation conditions. In Section

3.4 we first discuss the problem of finding the cell with cell internal defects when multi-

cycle test patterns are used. Then a method for accurately identifying the defective cells

is presented. Experimental results on industrial designs are presented in Section 3.5. The

final Section 3.6 draws the conclusions.

3.2 Terminology

In this section, the terms used throughout this chapter are defined:

 Observation Point: An observation point is a scan cell or a primary output (PO).

 Cell Internal Defect: A defect inside a library cell. Such cell is called Defective

Cell.

 Failing (Passing) Pattern: A test pattern that fails (passes) on the automatic test

equipment (ATE) for a failing chip.

www.manaraa.com

37

3
7

 Observable Passing Pattern: For a candidate defective cell, a passing pattern

that detects the stuck-at fault on the output pin of that cell is called observable

passing pattern.

 Exercising Condition: The exercising condition is a combination of logical

values on the inputs of the defective cell when a test pattern is applied.

 Failing Excitation Condition: An exercising condition of a defective cell that

excites the cell internal defect and propagates the fault effect to the cell output

pins.

 Passing Excitation Condition: An exercising condition of a defective cell that

does not excite or propagate the internal defect.

3.3 Excitation Conditions Extraction

The excitation condition extraction for a candidate defective cell is based on

failing patterns and observable passing patterns [35]. When applying a failing (observable

passing) pattern, the logic values on the inputs of the candidate cell are considered as the

possible failing (passing) conditions for the internal defect. However, it is not a simple

task to determine which exercising condition is the real failing (passing) excitation

condition when the cell is exercised multiple times, which is typically the case for

industrial designs. The existence of multiple exercising conditions is mainly caused by

test patterns with multiple capture cycles, mixing edge triggered flip-flops and clock

driven logic [35].

Next, we give an example to explain the problems of multiple exercising

conditions caused by multi-cycle test patterns and mixing edge triggered flip-flops. To

illustrate multiple exercising conditions of a two-cycle pattern in Figure 10, we expand

the circuit into four copies, and we call each copy as a simulation frame. Each simulation

frame represents the status of the circuit before the clock edge (both leading edge and

trailing edge). The waveform of the two capture cycles is also shown in Figure 10. Before

www.manaraa.com

38

3
8

the first leading edge, the inputs of the AND cell are “11”. After the first leading edge

and before the first trailing edge, the input logic values become “01”, which is another

exercising condition. One can easily calculate that there are another two exercising

conditions “00” and “10” before the last leading edge and before the last trailing edge,

respectively. Therefore, for this 2-cycle pattern, there are four exercising conditions for

the AND cell, which are “11”, “01”, “00” and “10”. If this AND cell has faulty behavior

with this 2-cycle pattern and the fault effect can propagate to some observation points, a

normal fault simulator can simulate this situation correctly but cannot tell which

exercising conditions activating the fault effect. The passive excitation condition which

assumes that all the exercising conditions in a pattern can be the excitation conditions has

been proved to have very low accuracy [35].

Frame 1 Frame 2 Frame 3 Frame 4

1 2 3 4

Clock

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

1

1

1

1

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

0

1

0

0

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

0

0

0

0

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

1

0

0

0

FF1

FF2

FF1

FF2

FF1

FF2

FF1

FF2

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

FF1

FF2

Figure 10. Example of Multiple Exercising Conditions

In [35], an active excitation condition extraction method was proposed to

correctly determine failing excitation conditions from failing patterns and passing

excitation conditions from observable passing patterns. Compared to the passive

excitation condition extraction method, the active excitation condition extraction method

first categorizes the exercising conditions that occur only in failing (observable passing)

www.manaraa.com

39

3
9

patterns as failing (passing) excitation conditions. Then if a failing (observable passing)

pattern contains exactly one undecided exercising condition, such exercising condition

will be classified as failing (passing) exercitation condition. For the rest of undecided

exercising conditions, choose one associated with the most observable passing patterns

and change it into passing excitation condition. These steps are applied iteratively until

no undecided exercising condition can be converted. Experimental results reported in

[35] demonstrated its effectiveness. However, the method still cannot accurately extract

excitation conditions for all the cases. One extreme example is when there is only one

failing pattern and no passing pattern. Our experimental data shows that the method in

[35] cannot get excitation condition correctly for about 5% cases that will be presented

later.

G1

G2
Q

Q
SET

CLR

D

G1

G2
Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Shift Capture Capture

1

1

0

0/1

1

0

1

0 0/1

0/1

s-a-1 s-a-1

FF1 FF1 FF1

Figure 11. Simulating with Two Capture Cycles

In order to accurately find the failing or passing excitation conditions, one needs

to know the information regarding the simulation frames in which fault effect makes it to

an observation point. In this chapter, we propose a method that traces back from the

observation points with fault effects to find such information. To illustrate the idea,

Figure 11 gives an example. Considering a failing pattern with two capture cycles, and a

www.manaraa.com

40

4
0

suspect defective AND cell G1 identified by gate-level diagnosis with stuck-at-1 fault at

the output. In Figure 11, the circuit is expanded into two frames to explain the simulation

process for each capture cycle. In the first capture cycle, the stuck-at-1 fault effect is

activated but blocked by cell G2, thus FF1 cannot capture any fault effect. In the next

capture cycle, the fault is activated and propagated through cell G2, and captured by FF1.

With fault effect propagation information we know that if G1 has cell internal defect that

causes the test pattern to fail, and only the exercising condition on capture cycle 2 is the

failing excitation condition since the fault effect in the first cycle is blocked. Without

fault effect propagation information, both exercising conditions at the two cycles will be

regarded as failing excitation conditions, which is not accurate. In the proposed method,

we keep track of fault effect information when simulating each frame.

 Procedure 1

 For each simulation frame Ti

 Simulating the circuit with the candidate suspect.

 For each observation point Oj with fault effect

 Let Sij be the set that contains the frames where the fault effect observed on Oj is

from. Let Q be the queue that stores the gates with fault effects. Initially Sij = Φ,

Q = {Oj}.

 While Q is not empty

 Let G = Dequeue(Q).

 If G is flip-flop, Sij = Sij U S(i-1)k where k is the index of G.

 Else

 If G is the faulty site Sij = Sij U {Ti} End If

 Add all the inputs of G with fault effects into Q.

 End If

 End While

 End For

 End For

Figure 12. Backtracing Procedure

www.manaraa.com

41

4
1

In event-driven fault simulation, after simulating each time frame, we add an extra

procedure to back trace from the observation points that have the fault effects to find out

where the fault effects are from. The backtracing procedure traces along the path with

fault effects until it reaches a candidate fault site or a flip-flop. Figure 12 gives details of

the procedure for backtracing. We use the example in Figure 11 to explain how the

procedure works. In the example, after simulating the first capture cycle, since there is no

observation point capturing fault effect, the procedure will not do the backtracing. In the

second capture cycle, FF1 has the fault effect. Starting from FF1, the procedure will trace

back through cell G2 and reaches the fault site G1. Therefore, one can know that if there is

a mismatch observed on FF1, the fault effect must come from the second capture cycle

and the condition for exciting the internal defect of G1 must be “01”.

Note that the backtracing procedure may not always find the exact frames in

which the internal defects are excited. Figure 13 gives an example in which the

backtracing procedure will include both frames, and thus both “10” and “01” are

considered as the failing excitation conditions. In reality, the defect may only be

activated by “10” or “01”.

G1

G2
Q

Q
SET

CLR

D

G1

G2
Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Shift Capture Capture

0

1

0

0/1

0/1

0/1

1

0 0/1

0/1

s-a-1 s-a-1

FF1 FF1 FF1

Figure 13. Inaccurate Excitation Conditions

www.manaraa.com

42

4
2

In order to further refine the excitation conditions, the active excitation condition

extraction heuristic [35] is applied after applying backtracing procedure. Basically, the

heuristic will use other test patterns to validate whether “10” or “01” are real or not.

3.4 Diagnosis Defective Cells for Multi-Cycle Patterns

Needless to say, in order to find the cell internal defects, one prerequisite is that

the cell where the internal defects reside should be identified by gate-level diagnosis,

which is assumed by most of the cell internal diagnosis algorithms [32], [33], [35], [46].

This approach is mostly correct when the test patterns have only one capture cycle.

However, for the test patterns with multiple capture cycles, this approach may not work.

In this section, we propose a method to improve the accuracy of identifying the defective

cells when multi-cycle test patterns are involved. First we explain the problems caused by

multi-cycle test patterns.

3.4.1 Problems of Identifying Defective Cells for Multi-

Cycle Patterns

In general, the gate-level diagnosis algorithms [1], [18], [21], [41] assume that if a

realistic defect is activated, mostly it produces a fault effect only on a single pin which is

also called single-location-at-a-time [18]. For cell internal defect, usually stuck-at fault is

injected at the output pin of the cell and then fault simulated to mimic the faulty behavior

of the defect. A failing pattern is explained by the suspect cell when the simulation

responses resulting from the injected stuck-at fault exactly match the responses observed

on the tester. A cell which can explain more failing patterns is considered to be more

likely to be the real defective one. These techniques have been proved to be successful

when the test patterns only have single capture cycle since most of the defects manifest

stuck-at behaviors within single capture cycle [32], [33], [35], [46]. However, when the

test patterns have more than one capture cycle, stuck-at fault based analysis may not be

able to accurately locate the defective cell due to two reasons: 1) the realistic defect may

www.manaraa.com

43

4
3

present different faulty values at different capture cycles; 2) or it may only produce faulty

values on some of the capture cycles while remaining good for rest of the capture cycles.

G1

G3

G2

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

G1

G3

G2

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

0 0

1

1

0

1

0

1

1

0

s-a-0 s-a-1

1/0

1/0

1/0 1/0

1/0

0/1

0/1

0/1

1

Shift Capture Capture

FF1

FF2

FF1

FF2

FF1

FF2

Figure 14. Different Faulty Values In Two Capture Cycles

In Figure 14, we give an example for cell internal defect producing different

faulty values in different capture cycles. In this example, suppose there is a real cell

internal defect residing inside AND cell G1. Further assuming the truth table for that

internal defect is shown in Table 1, the status of the circuit is shown in Figure 14 when

applying a two capture cycles test pattern with the assumed internal defect.

Table 1. Truth Table for G1 With An Internal Defect

Input 1 Input 2 Good Output Faulty Output

1 1 1 0

0 1 0 1

www.manaraa.com

44

4
4

From Table 1 we know that the cell internal defect behaves as stuck-at-0 fault in

the first capture cycle, and behaves as stuck-at-1 fault in the second capture cycle. The

fault effect in the first cycle propagates through flip-flop FF1 and is captured by FF2 in

the second cycle. The fault effect in the second capture cycle is observed by flip-flop

FF1. Conventional gate-level diagnosis techniques inject either stuck-at-0 or stuck-at-1

fault at the output of the cell G1 and simulate it. If only stuck-at-0 is injected, the

simulation results will only see the fault effect on FF1. And similarly for simulating

stuck-at-1 only FF1 has the fault effect. Neither case can explain that failing pattern. Due

to the mismatching between simulation responses and tester responses, the cell G1 is not

identified.

G1

G3

G2

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

G1

G3

G2

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

0 0

1

0

0

1

0

1

1

0

s-a-1

0

0

0 0

0

0/1

0/1

0/1

1

Shift Capture Capture

FF1

FF2

FF1

FF2

FF1

FF2

Figure 15. Partial Faulty Capture Cycle

Similarly, Figure 15 shows the same defective cell with different pattern in which

the real defect only produces faulty value in the last capture cycle. If stuck-at-1 fault is

injected and simulated for both capture cycles, FF2 will capture the fault effect from the

www.manaraa.com

45

4
5

first capture cycle. Compared to the responses observed on the tester, the simulation

result produces an extra mismatch.

3.4.2 Proposed Diagnosis Methodology

Figure 16 gives a generic traditional flow for diagnosing cell internal defects and

the proposed flow. The traditional flow first uses path tracing to find a set of initial

candidate cells that could cause the chip to fail. These initial candidate cells are validated

through simulating the stuck-at faults with the failing and passing test patterns. The

excitation conditions are extracted after simulation. A minimum set of candidate cells are

selected to best explain the failure syndrome, and every candidate cell is scored and

ranked based on the simulation results. From the above discussions we know that some

defective cells may not be found when multi-cycle patterns are used if using stuck-at fault

model.

Path Tracing

Stuck-At Fault

Simulation

Excitation Condition

Extraction

Minimum Covering

Scoring and Ranking

Path Tracing

X Fault Simulation

Excitation Condition

Extraction

Minimum Covering

Scoring and Ranking

Suspect Validation

(a) Traditional Flow (b) Proposed Flow

Figure 16. Generic Traditional Diagnosis Flow vs. Proposed Diagnosis Flow

www.manaraa.com

46

4
6

To fix the above mentioned problems, our proposed approach does not assume

that the cell internal defect behaves as a permanent fault during all the capture phases.

Instead, we use X fault model [50], [51] to represent the fault effect at the potential fault

site. Note that the X fault model used in this work is different from the symbolic

simulation based fault diagnosis techniques [52], [53] which use multiple X values to

model different net branch fault effects in net open defects. Comparing with the

traditional diagnosis flow, there are mainly three different steps which are shown in

dashed rectangles in Figure 16. Next we describe the details of these steps.

 X Fault Simulation: For a given fail log (the tests and responses from a failing

chip), we first identify a set of library cells that probably cause the fail log.

Instead of using stuck-at fault model, we use X fault model since we do not know

whether the fault is excited or not and we do not know the faulty value either. To

avoid missing any real defective cells, we model fault site to have unknown value

(X). An event-driven simulator which is similar to stuck-at fault simulator is used

to propagate the X effect from the candidate fault site to the observation points. A

cell is said to explain a failing observation point if the X value can propagate to

that failing observation point. A cell is considered to explain a failing pattern if

the cell explains all the failing observation points of that failing pattern. By doing

so, for example, the real defects in Figure 14 and Figure 15 will not be dropped.

In [51] X fault model is used to diagnose defects which present different stuck-at

values for different test patterns, and the fault candidates are ranked directly using

the X fault simulation results which can be too conservative and include extra

fake diagnosis results. In the work reported in this chapter the X fault model is

used mainly for handling the cell internal defects which can produce different

faulty values or partial faulty values within the same multi-cycle pattern.

Specifically, the candidate cells found by X fault simulation are not ranked by the

www.manaraa.com

47

4
7

X fault simulation results. Instead, we use an extra step described later to validate

those candidates prior to rank them.

 Excitation Condition Extraction: Each candidate obtained from the first step can

possibly be the real defective cell. In this step, for each candidate the excitation

conditions including failing conditions and passing conditions are extracted. First

an X fault is injected at the output of the candidate faulty cell, and then the failing

patterns are simulated. During the fault simulation, the backtracing procedure

described in Section III is applied to find the frames which the observed X fault

effects come from. In addition the active excitation extraction heuristic [35] is

used to refine the failing excitation conditions. In a similar way, the passing

excitation conditions can be extracted by fault simulating all the observable

passing patterns.

 Suspect Validation: X-fault simulation in the steps above is more conservative

than stuck-at fault simulation and while it improves accuracy it may also find

more fake defective cells. To remedy this effect, after the failing and passing

excitation conditions are extracted, in this step, each suspect cell is examined

again with the extracted excitation conditions to filter out fake defective cells. We

hypothesize that the candidate cell has real internal defects and the defects are

activated by the extracted excitation conditions. If the hypothesis holds,

simulating the candidate cell with the extracted excitation conditions the

simulation results should perfectly match the observed responses on the tester for

every test pattern, i.e., all the failing patterns can be explained and all the passing

patterns pass the fault simulation. The simulation is done by utilizing the

following strategy: modify the truth table of the candidate defective cell with the

extracted excitation conditions and simulate the whole circuit with the modified

cell using both the failing patterns and the passing patterns.

www.manaraa.com

48

4
8

3.5 Experimental Results

To examine the effectiveness of the proposed methodology, we designed some

controlled experiments to compare it with a state of the art commercial diagnosis tool

which uses active excitation condition extraction method [35]. For each library cell, a set

of internal transistor-level physical defects are extracted from the layout of the cell and

each extracted defect is simulated in SPICE to generate an excitation table for that defect

[48]. Two types of defects are injected: combinational defect (such as transistor bridge)

which requires only one cycle excitation conditions and sequence-dependent defect (like

transistor stuck-open) which needs a sequence of two excitation conditions [35]. Since

for the real defect whether it is sequence-dependent or not is unknown beforehand, in our

diagnosis algorithm we always extract excitation conditions with both one and two

cycles, and both are examined at the suspect validation step to decide whether the

identified defect is sequence-dependent or not. Test patterns are generated by using a

cell-aware ATPG tool [48] targeting the extracted cell internal defects inside all the

library cells. In order to emulate the behavior of a failing chip with cell internal defect,

we randomly select a cell instance and inject single cell internal defect, and then with the

injected defect the circuit is simulated against the generated cell-aware test patterns to

produce a fail log. Two metrics, average accuracy and average resolution, are used to

compare the proposed method with the method of [35]. For each case of injected defect

accuracy is 1 if both the identified cell and the extracted excitation conditions are correct,

and is 0.5 if only the cell is found but excitation conditions are incorrect, otherwise it is 0.

The resolution for each case is computed as 1/#suspect, where #suspect is the number of

suspects reported by the diagnosis tool. If no suspect is found or the accuracy is 0, the

resolution is 0. Larger the value of resolution the better it is as the number of suspects

reported is smaller and includes the real defective cell. Average values of accuracy and

resolution over all the injected defects are used in the comparisons. 5 industrial designs

are included and their design information is shown in Table 2.

www.manaraa.com

49

4
9

3.5.1 Experimental Results for Combinational Patterns

The first experiment was conducted to validate the effectiveness of using

backtracing procedure to improve the accuracy of the excitation conditions extraction. In

order to isolate the problems that defective cell may not be found when using multi-cycle

test patterns, here we only used the cell-aware test patterns with single capture cycle. 400

failing cases were created for each design. Conventional gate-level diagnosis techniques

were used to identify the defective cells. Even if the test pattern has only capture cycle,

there may exist multiple excitation conditions due to mixing edge triggered flip-flops and

clock driven logic.

Table 2. Design Characteristic Information

Designs Number of Gates

D1 65 K

D2 6.3 M

D3 2.4 M

D4 2.5 M

D5 2.8 M

In Table 3, we compared the procedure of [35] with our proposed procedure. The

second column gives the number of test patterns used. Column 3 gives the percentage of

correctly diagnosed using active excitation condition extraction method of [35]. The last

column presents the results for the proposed procedure described in section 3. Diagnosis

was considered to be correct if the defective cell is identified and failing and passing

conditions extracted are correct. The result confirms the effectiveness of our proposed

www.manaraa.com

50

5
0

procedure in extracting the excitation conditions. Note that there are still 0.2% inaccurate

cases. These are due to the fact that the backtracing procedure cannot find the exact

excitation frame.

Table 3. Diagnosis Results for Using Combinational Patterns

Designs
#Test

Patterns
% Correctly Diagnosed

with [35]
% Correctly Diagnosed with The

Proposed Procedure

D1 685 94.20% 99.80%

D2 1024 94.60% 99.80%

3.5.2 Experimental Results for Multi-Cycle Patterns

The second experiment was designed to validate the efficacy of the whole

methodology in locating the cell internal defect when multi-cycle test patterns are used.

For combinational internal defects cell-aware test patterns with two capture cycles are

used in the second experiment. For each design and defect type, we created a number of

failing cases. Table 4 compares the diagnosis results using procedures of [35] to the

results using the proposed method.

The second column in Table 4 is the type of the internal defects we injected. The

number of test patterns is in column 3. Columns 4 and 5 give average diagnosis accuracy

(Acc.) and resolution (Res.) for [35] and the last three columns show the average accuracy

(Acc.) whose value is the same using the suspect validation step or not using the

validation step, average resolution without using suspect validation (Res. w/o SV) step

www.manaraa.com

51

5
1

and using suspect validation step (Res. w/ SV) for the proposed method. From the results

in Table 4 we can see that using the procedure of [35] there are a large number of

inaccurate cases diagnoses leading to average accuracies between 67% and 80%. Upon

investigation we found that for most of the inaccurate diagnoses the defective cells could

not be found. The proposed method improves average diagnosis accuracy to over 94%

while also improving resolution. The improvement mainly comes from two aspects: 1)

the proposed method is more accurate in extracting the excitation conditions, which is

proved in the first experiment; 2) the proposed method can accurately locate the defective

cells. We also can see from Table 4 that without validate step (Res. w/o SV) the resolution

becomes worse than [35] since the X fault simulation tends to include more fake cell

suspects. With the extra suspect validation step (Res. w/ SV) some fake suspects can be

dropped and the average resolution is improved considerably.

Table 4. Diagnosis Results on Combination Cell Internal Defects

Designs
#Test

Patterns
#Cases

[35] Proposed Method

Acc. Res. Acc. Res. w/o SV Res. w/ SV

D1 692 528 0.759 0.260 0.941 0.172 0.476

D2 1024 400 0.675 0.196 0.935 0.191 0.270

D3 1024 119 0.807 0.323 0.950 0.259 0.457

D4 1024 97 0.778 0.255 0.933 0.223 0.322

D5 1024 150 0.757 0.240 0.937 0.249 0.425

Avg. - - 0.755 0.255 0.939 0.219 0.390

www.manaraa.com

52

5
2

The some conclusion can also be drawn for sequence-dependent cell internal

defects. For the sequence-dependent defects test patterns with three capture cycles are

used. Table 5 gives the diagnosis results on sequence-dependent cell internal defects. For

sequence-dependent defects,

Table 5. Diagnosis Results on Sequence-dependent Cell Internal Defects

Designs
#Test

Patterns

[35] Proposed Method

Acc. Res. Acc. Res. w/o SV Res. w/ SV

D2 1024 0.607 0.170 0.950 0.186 0.277

3.5.3 The Impact on Other Defect Types

Though the proposed new diagnosis methodology aims to improve the accuracy

for diagnosing transistor level defects, it may impact the diagnosis results for other defect

types. For example, fake cell suspects may be included while the real defect is stuck-at

defect, if the cell suspects can also explain all the failing patterns and happen to pass the

validation step. In this experiment we evaluated the side effects caused by the new flow

when diagnosing other types of defects.

We took multiple stuck-at faults as an example and conducted some controlled

experiments to validate the impact on stuck-at faults, including single stuck-at fault, two

stuck-at faults, three stuck-at faults and four stuck-at faults. We picked design D1 and

randomly injected stuck-at faults to create failure cases. The results are presented in

Table 6.

For different number of stuck-at faults, 100 failure cases are created. For

comparison purpose, the column 3 and 4 give the diagnosis results (accuracy and

www.manaraa.com

53

5
3

resolution) for a commercial diagnosis tool which is based on traditional SLAT diagnosis

techniques. The accuracy and resolution results for the proposed method are given in

column 5 and 6. From the results we can conclude that on average the proposed method

only impact the diagnosis accuracy slightly. For diagnosis resolution, the propose method

has better results. This can be explained by the fact that the extra suspect validation of the

proposed method can exclude some fake suspects. For example, for two stuck-at faults,

sometimes fake bridge suspects or cell suspects tend to show up, and using validation

step can further examine these suspects to filter out the less likely one.

Table 6. Impact on Diagnosing Stuck-at Faults

SAFS #Cases

Original Diagnosis Proposed Method

Acc. (%) Res. Acc. (%) Res.

1-SAF 100 100% 0.186 100% 0.205

2-SAF 100 90.5% 0.183 94.0% 0.235

3-SAF 100 92.7% 0.224 91.38% 0.276

4-SAF 100 90.5% 0.224 88.25% 0.227

Avg - 93.425% 0.204 93.408% 0.236

3.6 Conclusions

In this chapter, we presented a methodology to accurately diagnose the defects

inside the library cells when multi-cycle test patterns are used. We first proposed a

procedure to enhance the excitation conditions extraction. This is done by backtracing

from the observations points with fault effects during fault simulation to find out which

frames the observed fault effects are from. Experimental results prove that the accuracy

www.manaraa.com

54

5
4

of the excitation conditions extraction can be improved. We also developed a method to

identify the possible cells with internal defects using X fault model, when multi-cycle test

patterns are used. Experimental results on industrial designs demonstrate that the

proposed methodology can greatly improve both the accuracy and resolution of cell

internal diagnosis. We also evaluated the impact caused the new flow for diagnosing

other defect types. The results on stuck-at faults confirm that the impact is minimal.

www.manaraa.com

55

5
5

CHAPTER 4. STATIC DESIGN PARTITIONING TO REDUCE

MEMORY FOOTPRINT OF VOLUME DIAGNOSIS

In this section, a method based on circuit partitioning techniques is described to

reduce the memory consumed during diagnosis such that the throughput can be improved

[54].

4.1 Introduction

Quick yield ramp-up and stable high yield are critical for IC manufacturing

process, and systematic yield limiters need to be identified and fixed as soon as possible

to ensure business success. However due to the continuously shrinking feature size and

increasing complexity of designs, traditional yield learning methods such as inline

inspection, memory bitmapping and test chips are becoming less effective. Statistical

yield learning methods using volume diagnosis results have recently attracted great

attention [42], [43], [44], [55], [56]. The diagnosis results for a large number of failing

devices contain valuable defect information, such as types, locations, and physical

topology, design features, where various statistical methods can be applied to effectively

identify systematic issues and uncover dominant defect mechanisms.

One prerequisite for volume diagnosis driven yield learning is high quality

diagnosis results for a reasonably large number of failing devices because of the

statistical nature of the underlying algorithm. In other words, the volume diagnosis

should be able to process a large number of failing dies within a short period of time

using reasonable computational resource, without compromising the diagnosis quality.

However the continuously increasing design size becomes a big challenge for

high diagnosis throughput. One issue is that it takes longer to diagnose a failing die for a

larger design, because longer time is needed to simulate more gates. Works have been

published on improving the performance for diagnosis algorithm using various

techniques, such as pattern sampling [57], fault dictionary [8], [8], [9], [37], machine

www.manaraa.com

56

5
6

learning [38], GPU-based simulation [58]. Unfortunately the high memory requirement

for diagnosing very large designs is not addressed.

Another problem is the reduced resource utilization. Typically volume diagnosis

can increase the throughput by processing multiple failing dies simultaneously using

multiple processors on one or more workstations. Unfortunately the amount of physical

memory does not increase as fast as the number of CPUs for modern workstations. It has

become a serious bottleneck for volume diagnosis, and significantly reduces computation

resource utilization efficiency. For example, for a very large design with hundreds of

millions of gates, diagnosis tool may require up to hundreds of giga bytes of memory. In

this case, computers with a small memory may not be able to handle this design. Even for

workstations with largest memory and tens of CPUs, the number of concurrently running

diagnosis programs will be very limited as only a few diagnosis programs will use up all

the memory, and most of CPUs will simply stay idle. The low resource utilization

efficiency, plus the increasing CPU time for each failing die, poses a big challenge for

diagnosis throughput.

One intuitive way to solve this problem is design partitioning: first divide a large

design into many smaller blocks and then perform diagnosis on smaller blocks. By doing

this, the resource utilization can be improved because much less memory is required for

each diagnosis job on a smaller block, and thus more jobs can be executed at the same

time. In addition, the diagnosis time for each die can be reduced because diagnosis runs

faster on a small block. An issue that needs to be considered is that the diagnosis quality

may be impacted by this approach. In this work, we focus on minimizing negative impact

on diagnosis where design partitioning is used. As pointed out in [43] the minimal impact

on diagnosis quality can be addressed by statistical learning algorithms and no impact

should be seen for the final yield learning results.

Circuit partitioning is widely used in the VLSI CAD areas such as for design

packaging, HDL synthesis, design optimization, physical layout and parallel simulation

www.manaraa.com

57

5
7

[59]. The objectives of design partitioning for the above mentioned applications are

mainly minimizing the cut size and obtaining approximately equal sized blocks. Various

algorithms such as network flow [60], simulated annealing [61], move based [62] and

clustering approach [63], have been proposed to minimize the cut. The conventional

circuit partitioning techniques aiming at minimizing the cut size may not be suitable for

diagnosis purpose. For example, let us assume that there are two equal size blocks A and

B in a design and only one path p exists between them. Traditional circuit partitioning

tends to cut p and separate A and B. However, if all the gates in A can only be observed

through p, cutting path p would result in complete loss of failing information for all the

faults in A since all the circuit outputs where the test response of block A are observed

are in block B. [36] proposed an algorithm to partition the circuit logically into sub-

circuits aiming to reduce the number of simulations for diagnosis. However, the memory

requirement for this circuit partitioning algorithm is not reduced since the entire circuit

needs to be simulated during diagnosis.

In this chapter, we propose a method to partition designs for minimal loss of

simulation information, and thus minimal impact on diagnosis results. We also discuss

how to perform diagnosis using the partitioned design blocks to improve diagnosis

throughput. The rest of this chapter is organized as follows: In Section 4.2 we formulate

the design partitioning problem for diagnosis, and discuss possible impacts on diagnosis.

Section 4.3 gives the overall flow of block level diagnosis together with details of the

proposed design partitioning method, and a measure to estimate the impact on diagnosis.

Section 4.4 presents the experimental results. The work is summarized and conclusions

are drawn in Section 4.5.

4.2 Problem Formulation for Static Design Partitioning

Most of the logic diagnosis methods can be classified into two main categories:

cause-effect analysis [1] and effect-cause analysis [21].For cause-effect analysis, fault

www.manaraa.com

58

5
8

simulation is performed to build a complete fault dictionary for the faults used to guide

diagnosis, typically stuck-at faults. The diagnosis procedure looks up the fault dictionary

to find a set of suspects which best match the test fails by the failing device observed on

the tester. In the effect-cause procedures the suspects are derived using fault simulation.

A typical effect-cause diagnosis algorithm starts with an initial set of candidates found

through path-tracing from observed failing observation points. Then each suspect is fault

simulated to determine how well its response to tests match the observed behavior of the

failing die and the best matching suspects will be reported.

In this work we refer to failing (passing) observation points observed on the tester

or in fault simulation as failing (passing) bits (of a test or test set).

The design partitioning for diagnosis problem can be formulated as follows. For a

given design with n nodes, V = {v1, v2, v3, …, vn} where vi is a design node (gate),

partition it into N disjoint blocks {B1, …, BN} of roughly equal size, such that the overall

impact on simulation accuracy for all faults is minimal.

The intuition behind the argument that diagnosis using circuit blocks may not

severely impact diagnosis accuracy is based on the observation that connections to and

from most circuit gates are confined to a small local part of the design. Figure 17 gives an

example to illustrate this. Here the original design is partitioned into two blocks, B1 and

B2. In Figure 17 the complete fan-in and fan-out cone for gate g1 is within B1. Thus when

a fault in g1 is simulated identical output responses for such faults are obtained if

simulated within the original design and within the partitioned design block B1 for any

test pattern, i.e., there is no information loss using block level analysis. The number of

such gates should be maximized in a partition. However, it is unavoidable to cut some

interconnects in the original netlist when assigning gates to different blocks. The

problems that occur when interconnects are cut off and possible remedies are discussed

next.

www.manaraa.com

59

5
9

The first problem is the unknown values (Xs) for boundary gates. A gate in a

block is called a boundary gate if it is driven by at least one gate in a different block.

When simulating a gate, say g, in a block assuming that the signals from gates in other

blocks are unknown, the possibility of the output of g to be unknown or X increases if

one or more boundary gates exist in the fan-in cone of g. For example the boundary gate

g4 in Figure 17, one of its inputs becomes X because one of its drivers g3 is assigned to

block B2. Since g4 is an exclusive OR gate even if the output value of g2 which drives the

other input of g4 is known the output g4 becomes X. The propagated Xs will affect the

fault activation and propagation. This problem can be solved by assigning values

obtained from simulation of fault-free circuit to the driving gates of the boundary gates of

a block as follows. First good machine simulation is performed for all the test patterns,

and the values on the inputs of the boundary gates for each test pattern are recorded. Next

when simulating a block the stored good simulation values for the driving gates of its

boundary gates are used. By doing this inputs of the boundary gates become fully

specified and the Xs introduced by design partitioning are eliminated.

In addition, the failing information for a fault may be lost if it may propagate to

an observation point assigned to a different block. Here observation points can be

primary outputs or scan cells. For example, gate g5 can reach two observation points, O2

and O3. After partitioning, it is impossible to observe failure at O2 for any fault at g5,

because O2 is not visible when simulating B2. This will cause missing failing bits for a

fault. That is, some failing bits for a fault which were seen when simulated using original

design becomes missing when simulated using the design blocks. For example, assume

fault g5 stuck-at-0 can be detected by test t1 at O2 and O3 in the original design, block

level simulation will lose the failing bit (t1, O2) for this fault. Such missing failing bits for

a fault will affect the matching results with the targeted failing device, and thus may

impact the final diagnosis results. In order to address this issue, the overall failing

information loss for the whole design, which is defined as the average information loss

www.manaraa.com

60

6
0

for every fault, should be minimized during partitioning a design, and the diagnosis

algorithm need to be enhanced to tolerate such missing information.

fan-in

cone

fan-out

cone

g1

B1 B2

g2

g3

g4

g5

o1 o2 o3

Figure 17: Design Partitioning

Partitioning may also produce extra failing bits which do not exist in the original

design. Again referring to Figure 17, gate g2 in block B1 has two paths re-converging at

gate g4. In the original circuit, a fault effect at the output of gate g2 can propagate through

these two paths, and the fault effects may cancel each other at g4 and no fault effect is

observed at O1. However, when simulating B1 after partitioning, a fault free value is

assigned to the boundary gate g3 and the fault effect can propagate through g4 and be

incorrectly observed at O1. This effect is called fault effect loopback. Such extra failing

bits can potentially lead the diagnosis algorithm into producing inaccurate results, and

thus it needs to be carefully addressed. Fortunately, it is observed that the occurrence

probability for this effect is very low. Also it can be completely eliminated by carefully

crafted partitioning procedures. The partitioning procedure we propose in the next section

has this property.

www.manaraa.com

61

6
1

It should be pointed out that extra failing bits and missing failing bits may occur

in any partition if multiple faults are activated by a test pattern. This is due to the fact in

the case of multiple faults there may be fault masking in the complete design which may

not occur in the partitioned design leading to extra failing bits and it is also possible that a

multiple fault detected in the complete design may not be detected in the partitioned

design leading to missing failing bits. It is expected that the instances of these events will

not be high.

A balanced partition, i.e., all blocks of the partition have similar size is preferred

because the memory usage and run time needed for each block is proportional to the

block size. An unbalanced partition may have less information loss, but very limited

memory reduction and improvement in diagnosis throughput because the largest block

may become the new bottleneck.

Also it is unnecessary for blocks to be disjointed. Shared logic can be added to

reduce loss of simulation information, but the cost is reduced throughput improvement

due to the increased block size. In this work, only disjoint partitioning is considered.

4.3 Static Design Portioning Algorithms for Logic

Diagnosis

In this section, we give a method to partition a given design into smaller blocks

with roughly equal size. Before giving the details of the method, we next present the

overall block level diagnosis flow.

4.3.1 Overall Block Level Diagnosis Flow

Figure 18 illustrates the proposed flow for block level diagnosis, i.e. performing

diagnosis on partitioned design blocks. The flow consists of two stages: pre-processing

stage and diagnosis stage. In the pre-processing stage, the first step is to partition the

original design into N blocks, B1, …, BN, and identify all boundary gates for individual

blocks. The details of the partitioning algorithm will be discussed in Section 4.3.2. The

www.manaraa.com

62

6
2

second step is to map the original test set T to the block level for each block, T1, …, TN,

based on the design partitioning results. First the fault free values for all boundary gates

under T are computed and saved. For a test pattern tp in Ti whose corresponding test

pattern in T is t, the test stimuli consist of two parts: stimuli from t for the inputs which

belong to block Bi, and values for the inputs of the boundary gates of Bi which come from

the previously stored simulation results of t.

The second stage is to perform block level diagnosis for a given fail log. The first

step of the block level diagnosis is to partition the original fail log (failing responses of

the circuit under diagnosis observed on the tester) into several block level fail logs based

on the design partitioning generated in the previous stage. Each block level fail log, Fi,

contains all the failure information associated with the observation points of the

corresponding block Bi. Then any non-empty Fi can be diagnosed using the

corresponding block level design Bi and the test set Ti to generate the report Diagi for

block Bi. The empty block level fail logs are ignored. The last step is to process all the

block level diagnosis reports and generate the final diagnosis report for the original fail

log.

Since the block level diagnosis runs on a much smaller block level design, the

memory footprint which is proportional to the design size is much smaller. For a given

amount of memory, many block-level diagnosis jobs can be executed concurrently. Also

the CPU time can be expected to be reduced for each block level diagnosis run due to the

reduced design size.

It is important to note that Stage1 of the procedure is run only once as a pre-

processing step to obtain the partitioned circuit and collect information on fault free input

values to boundary gates. Stage 1 can be run off line and used in diagnosing all instances

of defects in Stage 2 essentially on line.

www.manaraa.com

63

6
3

Original

Design

Block B1 Block BN
...

1. Static Design Partition

Original

Test Set

Test Set T1 Test Set TN
...

2. Test Set Partition

Fail Log F

Fail Log

Segment F1

Fail Log

Segment FN

Pre-Processing Stage

Block Level Diagnosis Stage

...

Logic

Diagnosis

Logic

Diagnosis

Block B1

Test Set T1

Block BN

Test Set TN

Diagnosis

Results Diag1

Diagnosis

Results DiagN

...

3. Fail Log Partition

4. Block Level Diagnosis

Final Diagnosis

Results Diag_F

5. Diagnosis Results Merging

Figure 18: Overall Flow of Block Level Diagnosis

4.3.2 Partitioning Algorithm

One intuitive idea to guide partitioning algorithm is to group the gates whose

output values can propagate to the same set of observation points together and thus

www.manaraa.com

64

6
4

minimize the number of circuit paths being cut by the partition. At the same time

balancing of block sizes needs to be addressed.

We propose an iterative procedure to generate a balanced design partition with

minimal failing information loss as follows. First backward tracing is performed to

identify the fan-in cone of every circuit observation point (primary output or scan cell).

We define a metric called shared gate ratio (SGR) for two regions A and B to

measure their compatibility. Region is a set of gates, which could be a fan-in cone or a

partition block. Let C be the intersection of regions A and B. The SGR for A with B is

SGR(A,B) = |C|/|A|, where |C|(|A|) is the number of gates in C(A). Similarly SGR for B

with A is SGR(B, A) = |C|/|A|.

The proposed procedure of design partitioning is shown in Figure 19. Suppose we

want to partition the design into N blocks with each block having a similar size which is

the total number of gates of the original design divided by the number of blocks N.

Initially each partition block is empty, and we iteratively choose an empty block and start

placing gates into it. Instead of randomly picking a fan-in cone of an observed output and

placing it into the block, we choose a fan-in cone with fewest gates. By doing this better

balancing can be achieved by avoiding adding a large cone into a block at the first step.

After picking the first observation point cone, we use SGR to guide adding additional

fan-in cones until the block size limit is reached. The gates in the fain-in cone with

maximal SGR with the current partition block tend to have high probability to lose failing

information if they are assigned to a different block. In case there is no fan-in cone that

has any shared gate with the current block, an unselected fan-in cone with the least

number of gates will be selected, similar to picking the first fan-in cone.

Basically the procedure places all gates in a fan-in cone of an observation point

into a block. However if a fan-in cone shares gates with cones that are earlier placed in a

block the shared gates are removed from the cone prior to placing it. As discussed below,

this avoids the loopback problem discussed in the last section.

www.manaraa.com

65

6
5

Design Partitioning Algorithm

 Initially, each block Bi is empty for i = 1 .. N

 For a block Bi where i = 1 .. N

 While Bi does not exceed the size limit

 If Bi is empty

Choose an unselected observation point Oj with smallest fan-in cone Cj

Add all the unselected gates in the fan-in cone Cj into Bi

Mark Oj as selected, and mark the gates in Cj as selected

 Else

Choose an unselected observation point Oj with maximal SGR(Cj, Bi)

where Cj is the fan-in cone of Oj, or Oj with smallest fan-in cone if the

maximal SGR is 0

Add all the unselected gates in the fan-in cone Cj into Bi

Mark Oj as selected, and mark the gates in Cj as selected

 End If

 End While

 End For

Figure 19: Proposed Design Partitioning Algorithm

The proposed algorithm clusters the gates into blocks by greedily reducing the

information loss. However, from the problem formulation section we know that the

partitioning could have the probability to introduce additional failing bits due to fault

effect loopback. For our proposed design partitioning method, there is no extra failing bit.

Below we explain that in detail.

Without loss of generality we assume that there are two blocks B0 and B1, and two

observation points of these blocks are O0 and O1. Suppose the proposed method first

www.manaraa.com

66

6
6

picks B0 and assigns O0 to B0, and then assigns O1 to B1. Then all the gates in the fan-in

cone of O0 are in block B0. Note that some gates may belong to the fan-in cones of the

two observation points and these gates are assigned to B0 as B0 is first selected. For any

gate g0 in B0, it may drive zero or more gates in B1, but there is no path for the driven gate

d0 to reach any observation points in B0. Otherwise d0 should be put into B0 instead of B1

based on the assumption that B0 is selected first. For any gate g1 in B1, it cannot drive any

gate in B0 based on the partition algorithm, any gate driving O0 will go to B0. So no fault

effect of g1 can propagate to B0. Therefore, no extra failing bits can be produced by the

proposed algorithm.

4.3.3 Evaluating Design Partitions

In order to evaluate the quality of a given design partition, we propose a metric

based on complete fault dictionary. We compute a score/measure for a given partition as

discussed below. The motivation behind assigning a score to partitions is that they allow

comparison between partitions that may have been generated using different procedures.

As we demonstrate in the next section using experimental data that the proposed scores

correlate with diagnosis metrics of block level diagnosis procedure. Thus the score

enables us to optimize the partitioning algorithm without dealing with the complexity of

diagnosing various defects. The derivation of the score is described next.

Complete fault dictionaries are first generated for a design under a given test set

without and with the design partition. For large circuits, fault sampling can be used to

generate the fault dictionary. Then the fault dictionaries for the partition blocks are

compared with the fault dictionary for the un-partitioned circuit to “measure” loss of

failure information. For easy comparison, a simply computable measure/score that is

effective in comparing the relative impact on diagnosis results of different partitions is

proposed.

www.manaraa.com

67

6
7

The proposed score for a given design partition is computed as follows. For each

fault site, we first compute the score for each test pattern that detects it as:

),(#

),(_#
),(

pffbit

pfdpfbit
pfScore

 Equation 1

, where f is a fault and p is a test pattern that fails or detects fault f. #fbit(f, p) is the

number of failing bits for f under p, and #fbit_dp(f, p) is number of the failing bits in the

block containing f. Then the score for a fault f can be obtained as:

)(_#

),(
)(

fpatsfail

pfScore
fScore

 Equation 2

, where #fail_pats(f) is the total number of failing test patterns for fault f among the test

patterns used on the tester. The score for the partition is calculated by averaging the

scores of all the faults, as given below.

faults

fScore
Score

#

)(

 Equation 3

4.4 Experimental Results

In this section, experimental results are given for the proposed design partitioning

method. The first experiment is performed on ISCAS’89 benchmark circuits to validate

the proposed algorithm using the proposed score and diagnosis results for injected faults.

After that experimental results on industry designs are reported. The proposed method is

also evaluated by considering practical application, such as designs with test

compressions or using sequential test patterns.

www.manaraa.com

68

6
8

4.4.1 Results for ISCAS’89 Circuits

The seven largest ISCAS’89 benchmark circuits are used in this experiment. We

used full-scan versions of the circuits and the test patterns used detect all detectable

single stuck-at faults. Each circuit is partitioned into 2, 3, 4, 5 and 6 blocks by the

proposed design partitioning method.

To compute the score for different number of partitions, first the original test set

is simulated targeting all the faults of the original design. Then the original test set is

partitioned according to the design partitioning results. The block level test set is

simulated on its corresponding block targeting the fault lists of that block. The score is

computed using Equation 3. Table 7 gives the score and the number of boundary gates for

the seven circuits for different numbers of blocks. The first column gives the name of the

circuits, the rest of the columns show the score and the number of boundary gates for

each circuit for different numbers of blocks.

Table 7. Design Partition Results for ISCAS’89 Circuits

Ckts.
N=2 N=3 N=4 N=5 N=6

Score #BDY Score #BDY Score #BDY Score #BDY Score #BDY

s5378 0.96 153 0.907 224 0.892 295 0.843 375 0.818 406

s9234 0.979 156 0.87 464 0.945 430 0.849 661 0.827 630

s13207 0.969 196 0.901 387 0.777 395 0.776 405 0.952 436

s15850 0.907 286 0.899 649 0.942 645 0.923 645 0.899 620

s35932 0.985 3486 0.98 4944 0.973 5622 0.978 5213 0.978 5263

s38417 0.978 1013 0.974 813 0.984 1248 0.968 1628 0.95 1934

s38584 0.986 1093 0.968 1709 0.967 2049 0.977 2348 0.972 2348

Avg. 0.966 911 0.928 1312 0.926 1526 0.902 1610 0.914 1662

Ckts.: Circuits; Score: Simulation Score; #BDY: Number of Boundary Gates.

www.manaraa.com

69

6
9

From Table 7 we observe that for a given circuit the scores for the partitions

typically decrease with increasing number of blocks. This is to be expected as more

blocks would disconnect more circuit paths and the failing information loss increases.

The second observation is that the larger circuits have higher scores. For example, the

largest 3 circuits (s35932, s38417 and s38584) always have scores higher than 0.94 even

for 6 blocks which implies that the falling bit loss due to partitioning is within 6%.

We define unbalance ratio as a metric to measure if the proposed algorithm can

generate balanced design partition. The unbalance ratio is computed as:

p

pi

SZN

N
i

SZSZ
RatioUB

 1

)(
_

 Equation 4

, where N is the number of partition blocks, SZi is the number of gates of block Bi, and

SZp is the total number of gates of the original design divided by N. The unbalance ratio

(UB_Ratio) is 0 if the partition is perfectly balanced. We found that for the above seven

circuits with different number of partition blocks, the unbalance ratio is below 1% for all

cases using the proposed partitioning procedure.

We implemented a prototype block level diagnosis tool to quickly verify whether

the score can effectively predict the impact on diagnosis. The prototype is based on

cause-effect analysis method. First fault simulation is performed to build a complete fault

dictionary FD for the original design. The block level fault dictionary FD_i are built by

simulating the partition blocks. The block level fault dictionaries are then combined

together to form a complete fault dictionary FD_DP for a design partition. Compared

with FD, FD_DP may have fewer failing bits due to the design partitioning. During

diagnosis, for a given fail log, the fault dictionary is queried and suspects are iteratively

added to find a better match between the failing behavior and the simulation response in

the fault dictionary. The fail logs are created by injecting 100 each of 1, 2, 3 and 4 stuck-

at faults at random locations. These instances of injected faults are diagnosed using FD

www.manaraa.com

70

7
0

and FD_DP, and the diagnosis reports are compared to evaluate the impact on diagnosis

for a given design partition. Note that this prototype does not exactly follow the block

diagnosis flow described in Figure 18, but the same results will be obtained by an

implementation which implements the proposed flow.

The diagnosis results in this experiment consist of two parts: accuracy and

resolution. The accuracy is the ratio of the number of injected defects reported by

diagnosis to the number of defects injected. The resolution is defined as the number of

reported defect candidates divide by the number of defects injected. Ideally, the

diagnostic accuracy and resolution are 1, i.e., all the injected defects are identified and no

other false defects are included in the candidates reported by the procedure. The

diagnosis accuracy and resolution for all the circuits are shown in Table 8.

In Table 8, the first column is the circuit name. Columns 3 to 6 give the diagnosis

results for the original design (N=1), partitioned circuits for 2 blocks (N=2), 3 blocks

(N=3) and 4 blocks (N=4). For each circuit, there are 6 rows. The first four rows present

the diagnosis results averaged over 100 instances each of M injected stuck-at faults, M =

1, 2, 3 and 4. The fifth row of each circuit shows the diagnosis results averaged over all

the faults. The last row gives the score from Table 7 for comparison purpose. From Table

8, we can observe that the diagnosis accuracy for single stuck-at faults (M=1) is 1 for

most of the circuits even with multiple partitioned blocks. Though some failing bits are

lost, the impact on single stuck-at fault is minimal and most of the defects can still be

identified. The decreasing in accuracy for multiple faults becomes larger, from 1.5%

(s38417, M=4) to 4.5% (s5378, M=4). Overall, the impact on diagnosis accuracy is

minimal. It seems that the failing bit loss due to circuit partition has a larger impact on

diagnosis resolution as more suspects are reported by the diagnosis procedure.

www.manaraa.com

71

7
1

Table 8. Prototype Diagnosis Results on ISCAS’89 Circuits

Ckts.

N=1 N=2 N=3 N=4

Acc. Res. Acc. Res. Acc. Res. Acc. Res.

s5378

M=1 1.000 1.330 1.000 1.630 1.000 1.790 1.000 1.900

M=2 0.995 1.285 0.985 1.555 0.980 1.765 0.995 1.925

M=3 0.980 1.303 0.983 1.510 0.967 1.677 0.950 1.767

M=4 0.973 1.288 0.968 1.478 0.950 1.628 0.925 1.633

Avg. 0.987 1.301 0.984 1.543 0.974 1.715 0.968 1.806

Score 1.000 0.960 0.907 0.892

s9234

M=1 1.000 1.770 1.000 2.100 1.000 2.930 1.000 2.250

M=2 0.985 1.635 0.985 1.950 0.980 2.755 0.985 2.075

M=3 0.993 1.647 0.990 1.907 0.963 2.510 0.993 1.960

M=4 0.980 1.581 0.980 1.811 0.930 2.245 0.970 1.930

Avg. 0.990 1.658 0.989 1.942 0.968 2.610 0.987 2.054

Score 1.000 0.979 0.870 0.945

s13207

M=1 1.000 1.580 1.000 1.650 1.000 1.990 0.980 2.740

M=2 0.990 1.500 0.995 1.625 0.990 1.930 0.970 2.540

M=3 0.990 1.470 0.990 1.590 0.980 1.797 0.970 2.603

M=4 0.982 1.455 0.985 1.583 0.973 1.778 0.955 2.753

Avg. 0.991 1.501 0.993 1.612 0.986 1.874 0.969 2.659

Score 1.000 0.969 0.901 0.777

s15850

M=1 1.000 1.390 1.000 2.750 0.970 1.980 1.000 2.290

M=2 0.990 1.434 0.980 2.667 0.955 2.126 0.985 2.182

M=3 0.990 1.583 0.947 2.347 0.940 2.077 0.980 2.080

M=4 0.990 1.513 0.942 2.136 0.932 1.879 0.957 1.896

Avg. 0.992 1.480 0.967 2.475 0.949 2.015 0.980 2.112

Score 1.000 0.907 0.899 0.942

s35932

M=1 1.000 1.730 1.000 2.070 1.000 2.200 1.000 2.260

M=2 1.000 1.755 0.995 2.055 0.995 2.190 0.995 2.290

M=3 1.000 1.773 0.993 2.027 0.997 2.143 0.997 2.207

M=4 0.995 1.798 0.985 2.025 0.985 2.153 0.980 2.210

Avg. 0.999 1.764 0.993 2.044 0.994 2.171 0.993 2.242

Score 1.000 0.985 0.980 0.973

www.manaraa.com

72

7
2

Table 8. Continued

s38417

M=1 1.000 1.260 1.000 1.550 1.000 1.640 1.000 1.320

M=2 1.000 1.230 1.000 1.440 1.000 1.545 0.995 1.370

M=3 0.997 1.267 0.997 1.400 0.997 1.470 0.987 1.353

M=4 0.993 1.273 0.993 1.358 0.988 1.455 0.978 1.333

Avg. 0.997 1.257 0.997 1.437 0.996 1.528 0.990 1.344

Score 1.000 0.978 0.974 0.984

s38584

M=1 1.000 1.230 1.000 1.300 1.000 1.340 1.000 1.430

M=2 1.000 1.185 1.000 1.260 1.000 1.320 1.000 1.395

M=3 1.000 1.173 1.000 1.230 0.990 1.290 0.997 1.390

M=4 1.000 1.187 0.997 1.235 0.983 1.278 0.983 1.350

Avg. 1.000 1.194 0.999 1.256 0.993 1.307 0.995 1.391

Score 1.000 0.986 0.968 0.967

Ckts.: Circuits; Acc.: Accuracy; Res.: Resolution; N: Number of blocks; M: Multiple
stuck-at faults; Avg.: Average accuracy or resolution for multiple stuck-at faults;
Score: Simulation score

We can also observe that the impact on diagnosis accuracy and resolution for the

smaller circuits is higher than the impact for the larger circuits. For example, for s5378

average accuracy decreases by 1.9% and resolution increases by 38.8%, where the

average accuracy for s38584 is reduced by only 0.5% and the resolution grows by 16.4%.

This observation complies with what we have observed in Table 7: the simulation score is

higher for larger circuits. Therefore, for different circuits, the score can predict the

impact of circuit partitioning on diagnosis.

Another observation is that for most of the circuits, the impact on the diagnosis

results increases as the number of partition blocks increases. This also agrees with the

score results: the score decreases with increasing number of partition blocks. Note there

are a few cases where the score is higher for larger number of blocks. For example, the

score for s15850 is 0.907 when the design is partitioned into two blocks, and the score

www.manaraa.com

73

7
3

becomes 0.942 for four partition blocks. The diagnosis results (Cf. Table 8) agree with

these scores: both the accuracy and resolution for N = 4 are better than N = 2.

From the experiment on the benchmark circuits we can draw the conclusion that

the proposed score is a good metric to predict the impact on diagnosis results. It is helpful

for making tradeoff between the number of partition blocks and diagnosis quality before

heading into block level diagnosis.

4.4.2 Block Level Diagnosis Results on Industrial Designs

To further validate the effectiveness of the proposed partitioning algorithm, we

conducted an experiment on two industrial designs D1 and D2. The average CPU time

for partitioning design D1 into different number of blocks is about 42.97 seconds, while

for D2 the average CPU time is 1442.83 seconds. Both are run on a 2.93 GHz CPU.

Since the partitioning is a one-time effort before diagnosis, the run time is acceptable

compared to long diagnosis time for a large number of failing files. Table 9 shows the

score for the two circuits for different numbers of blocks, from 2 to 128. The first column

is the circuit name with the number of gates in the design in parentheses. The next seven

columns give the scores for the partitions. For the two designs, the score is above 0.9 for

partitions with 16 or fewer blocks. Simulation score for industry designs

Table 9. Simulation Score for Industry Designs

Circuits N=2 N=4 N=8 N=16 N=32 N=64 N=128

D1 (55k) 0.971 0.960 0.935 0.924 0.891 0.871 0.851

D2 (270k) 0.988 0.960 0.943 0.917 0.872 0.833 0.807

www.manaraa.com

74

7
4

The diagnosis experiment on the industry designs was performed using a

commercial diagnosis tool, following the block level diagnosis flow described in Figure

18. We injected 1, 2, 3 and 4 stuck-at faults in random locations in to the two designs to

create up to 1000 different fail logs. For comparison purpose, we first diagnose the fail

logs on the original designs to get the results without partitioning. For the block level

diagnosis, first each design is partitioned into 2, 4 and 8 blocks. Then the test patterns and

fail logs are partitioned based on the design partitioning results. After that, each block is

diagnosed independently. The final diagnosis results are merged by simply combining the

diagnosis report for each block. Figure 21 and Figure 23 give the diagnostic accuracy and

resolution results for D1 and D2, respectively. The left chart in each figure gives the

diagnosis accuracy, and the right chart shows the diagnosis resolution. Each cluster in the

chart shows the results for design without partition, with partitions of 2, 4, and 8 blocks.

M denotes the number of stuck-at faults injected, and “Avg.” is the average result for M =

1, 2, 3 and 4.

Figure 20. Diagnosis Accuracy for D1

0.9

0.92

0.94

0.96

0.98

1

M=1 M=2 M=3 M=4 Avg.

1

2

4

8

www.manaraa.com

75

7
5

Figure 21. Diagnosis Resolution for D1

Figure 22. Diagnosis Accuracy for D2

0

0.5

1

1.5

2

2.5

3

3.5

4

M=1 M=2 M=3 M=4 Avg.

1

2

4

8

0.9

0.92

0.94

0.96

0.98

1

M=1 M=2 M=3 M=4 Avg.

1

2

4

8

www.manaraa.com

76

7
6

Figure 23. Diagnosis Resolution for D2

From Figure 21 and Figure 22, we can see that the impact on accuracy for single

stuck faults is very small, less than 1%. But the accuracy for multiple stuck-at faults is

getting better for block level diagnosis, and the more partitioning blocks the higher the

accuracy is. Also we observe that the accuracy difference between block level and

original design is bigger when having more defects. All these observations seem to

contradict our intuition that more blocks would lose more failing bits thus have lower

diagnosis accuracy which actually holds for single defect case as we can see from the

results. However for multiple defects, it is observed that the fault effect of a defect could

be masked by other defects [24], thus the diagnosis accuracy may decrease when

diagnosis is done on the un-partitioned circuits. The accuracy results for the two designs

without partitions also prove that accuracy decreases as more defects are injected. When

the design is partitioned with N blocks, the probability for two defects in the same block

is (1/N × 1/N) × N = 1/N. Then the chance to have mask effect is reduced, and the bigger

0

0.5

1

1.5

2

2.5

3

3.5

M=1 M=2 M=3 M=4 Avg.

1

2

4

8

www.manaraa.com

77

7
7

the N is, the less chance there is for masking. Consequently, the accuracy for multiple

defects for block level is higher than the original design.

The resolution (Figure 21 and Figure 23) for block level diagnosis becomes

worse, with increasing numbers of blocks. From the results we can also see that this

impact is bigger for single stuck-at faults. When diagnosing on blocks for single stuck-at

faults, only one block could have the real defect and the rest of them are fake suspects.

Therefore, the number of suspects increases more for single stuck-at faults.

As shown in [43], a typical statistical learning algorithm can achieve very good

results with diagnosis results with 90% accuracy. It is believed that the minimal impact

on diagnosis accuracy and resolution for block level diagnosis on large industrial designs

should have negligible impact on the final results of statistical yield learning.

Since this work focuses on the feasibility study for the proposed design

partitioning algorithm and block level diagnosis flow, a quick prototype for the block

level diagnosis was developed by masking gates to mimic a design block, and thus no

performance data is reported for each individual diagnosis run. We are implementing an

intrinsic block level diagnosis tool.

4.4.3 Evaluation on Designs with Sequential Test Patterns

In the above experiments, we have evaluated the impact on diagnosis with

combinational pattern. However, in practical multiple cycle sequential patterns are often

used to detect time faults as well as other faults which need multiple cycles. To simulate

sequential patterns, usually the original circuit is expanded into several frames and each

frame has one copy of the design. When diagnosis is performed on block level, the block

is expanded to simulate the sequential patterns. Figure 24 describes an example for a

circuit with two partitioning blocks.

In the example, the circuit is partitioned into two blocks B1 and B2. When

diagnosing with a two-cycle sequential pattern, each partitioning block is expanded into

www.manaraa.com

78

7
8

two frames: Frame 0 and Frame 1. Then B1 is expanded into B1_1 and B1_0 and both of

them are identical to B1. Similarly B2 is expanded into B2_0 and B2_1.

B1

B2

B1_0 B2_0

B1_1 B2_1

Frame0

Frame1

B2

Combinational Pattern

Sequential Pattern

Expand

Figure 24. Design Partitioning with Sequential Pattern

The number of disconnected paths for sequential pattern is more than the number

for combination pattern. For combination pattern, the paths that are cut off are from B1 to

B2. Besides these, in sequential pattern case there are additional disconnected paths

crossing the simulation frame boundary, such as from B1_1 to B2_0 through B2_1, from

B2_1 to B1_0 and so on. These increasing cut-off paths potentially can have more

impact on simulation results which turns out larger impact on diagnosis results.

We have proved that using proposed design partitioning algorithm can avoid the

fault effect loopback when combination pattern is used. However for sequential patterns,

the fault effect loopback may present. Therefore it may introduce some extra failing bits

which potentially could lead to inaccurate diagnosis results. In the Figure 25, an example

is given to show how the extra failing bits are generated for sequential patterns. In the

www.manaraa.com

79

7
9

example, the fault effect of gate G1 will be cancelled out at gate G3 in the original design.

However, using the expanded partitioning block to simulate the pattern, since the pat G1-

G2-G3 is cut off and a good machine value is assigned at the input of G3, the G3 can

potentially carry the fault effect of G1 which can be captured by some observation points.

As we discussed, the extra failing bits can cause accuracy loss.

B2

B1_0 B2_0

B1_1 B2_1

Frame0

Frame1

G1

G2

G3

Figure 25. Extra Failing Bits for Sequential Pattern

In order to quick evaluate the diagnosis impact for sequential pattern, we designed

some experiments by using the proposed simulation score as an estimator without

spending more efforts to implement the diagnosis program. 7 ISCAS’89 benchmark

circuits and two industrial designs D3 and D4 are included in the experiments. D3 is a

real design with about 270K gates and 20K flip-flops, and D4 has approximate 2M gates

www.manaraa.com

80

8
0

and 137K flip-flops. 2-cycle sequential patterns are generated for all the circuit targeting

stuck-at faults.

The simulation scores for 7 ISCAS’89 circuits are shown in Figure 26. Each

circuit is partitioned into 2 to 6 blocks. The first 7 bar clusters in the figure are the scores

for the 7 benchmark circuits with different numbers of blocks. The last cluster shows the

average score for all the circuits with different number of partitioning blocks. Comparing

with scores using combination patterns in Table 7, the average score is lower from 0.06

to 0.10, which means more failing bits loss. This implies that the diagnosis impact for

sequential pattern is expected to be larger than the impact for combination pattern. Note

that the score for the larger circuit is higher than the score for the smaller circuit, and for

the two largest circuits (s38471 and s38584) the score is always higher than 0.9 for most

of partitioning scenarios. As we showed before, the score is a pessimistic indicator and

the impact on accuracy for large circuit can be expected to be smaller than 0.1.

In order to evaluate the extra failing bits caused by sequential patterns, we count

the number of extra failing bits for each circuit with different number of partitioning

blocks. In Figure 27, the X-Axis is the name of the circuit and the Y-Axis gives the extra

failing bit ratio which is the number of extra failing bits divided by the total number of

extra failing bits. Clearly we can see the number of extra failing bits due to sequential

pattern is rarely small comparing with the complete number failing bits.

Figure 28 and Figure 29 compare the simulation score for sequential pattern with

combination pattern for industrial design D3 and D4 respectively. These two designs are

partitioned into different number of blocks from 2 to 256. The Y-Axis is the simulation

score and X-Axis presents different numbers of partition blocks. It is obvious that the

simulation score for sequential pattern is always lower than the score for combination

pattern. For D3, the simulation score drops from 0.02 to 0.14, and for D4 the difference is

from 0.08 to 0.14.

www.manaraa.com

81

8
1

Figure 26. Simulation Scores for ISCAS'89 Benchmarks with Sequential Patterns

Figure 27. Extra Failing Bits for ISCAS'89 Benchmarks

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

s5378 s9234 s13207 s15850 s38417 s38584 Avg

2

3

4

5

6

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

s5378 s9234 s13207 s15850 s38417 s38584 Avg

www.manaraa.com

82

8
2

Figure 28. Simulation Scores for Industrial Design D3 with Sequential Patterns

Figure 29. Simulation Scores for Industrial Design D4 with Sequential Patterns

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2 4 8 16 32 64 128 256

Combinational Sequential

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2 4 8 16 32 64 128 256

Combinational Sequential

www.manaraa.com

83

8
3

The experimental results on various designs with different number of partitioning

blocks show that the sequential patterns have larger impact on diagnosis results as we

expected.

4.4.4 Evaluation on Designs with Test Compression

Test compression is widely used in large SoC (system-on-chip) design to reduce

the test data volume. Compression techniques such as EDT [64] compacting the test

response using XOR trees. Figure 30 describes an example in which four internal scan

chains are compacted by XOR trees. Here the non-PO (primary output) observation point

is the output of the XOR tree which connects several (4 in the example) internal

observation points (scan cells) rather than the scan cell for the circuit without test

compression structure. Therefore, when tracing the observation point to find the fan-in

cone (the essential operation in the proposed partitioning algorithm), several fan-in cones

of the internal scan cells are traced as shown in the example. For the proposed design

partitioning algorithm, instead of adding single fan-in cone each time for a partitioning

block it includes multiple fan-in cones for the external EDT observation points. This may

reduce the effectiveness of the proposed algorithm as among the selected multiple fan-in

cones some of them may not have large SGR with the current block.

Some experiments are conducted to evaluate the impact on diagnosis results for

design with test compression structure. In order to emulate the test compactor, we

arbitrary connect a number of observation points by a multiple input XOR gate. The

number of observation points selected for each XOR is the compression ratio. When

partitioning the design, tracing fan-in cone starts from the output of the XOR. Seven

largest ISCAS’89 circuit and an industrial design D5 with about 270K gates are included

in the experiments. Again, in order to quickly estimate the impact, we use the simulation

score to evaluate the diagnosis impact. The real diagnosis was not implemented.

www.manaraa.com

84

8
4

The first experiment was performed on seven largest ISCAS’89 benchmark

circuits. The circuits are modified to emulate the test compression structure by arbitrary

connecting 8 (C=8) or 16 (C=16) internal observation points to a XOR gate. Figure 31

presents the simulation scores for the 7 circuits and the average case. Each circuit is

partitioned into 6 blocks. Each cluster presents the simulation score for the circuit with no

compression (C=1), compression ratio = 8 (C=8) and compression ratio = 16 (C=16).

Averagely the simulation scores are dropped when circuit has compactor. We also note

that for some circuits, the simulation scores are higher comparing with no test

compression. This can be explained by that the heuristic SGR we used in the proposed

algorithm may not be the perfect, and the arbitrary connection with several observation

points happens to group some “good” fan-in cones together by lucky. But overall we can

notice the simulation score dropping for most of the cases.

EDT_Obspt

Figure 30. Tracing Fan-in Cone for an External Observation Point with Test Compression
Structure

www.manaraa.com

85

8
5

Another experiment was conducted on an industrial design D5. The circuit was

modified to emulate the compression ratio from 4 (C=4) to 128 (C=128). In Figure 32,

the experimental results are given. For each modified circuit and the original circuit

(C=1), it is partitioned into N=8, N=16 and N=32 blocks. Every cluster in the figure is the

simulation score for the circuit with different compression ratio from C=1 to C=128. We

can see from the results, the overall trend is that the simulation scores is dropping with

increasing compression ratio. Once can notice for some cases higher compression can

have better score (e.g. N=8 for C=16 and C=32), and again this can be explained by the

imperfect heuristic we used in the design partitioning algorithms and arbitrary connecting

some observation points could group some “good” fan-in cones together by chance. For

the extreme case (N=32, C=128), the simulation score is around 0.8. As we know the

simulation score is a pessimistic indicator, the impact on diagnosis accuracy is expected

to be smaller than 0.2.

Figure 31. Simulation Scores for ISCAS'89 Benchmarks with Test Compression
Structure

0.7

0.75

0.8

0.85

0.9

0.95

1

s5378 s9234 s13207 s15850 s35932 s38417 s38584 Avg

C=1, N=6

C=8, N=6

C=16, N=6

www.manaraa.com

86

8
6

Figure 32. Simulation Score for D5 with Test Compression Structure

4.5 Conclusions

In this chapter, we propose a design partitioning method to address the throughput

problem for volume diagnosis. The presented partitioning method is based on the fan-in

structure of the observation points to minimize loss of failing information. A score to

measure the information loss is proposed to predict the impact on diagnosis and

experimental evidence of its effectiveness effective is presented. Experiments on

industrial designs further demonstrate the effectiveness of the proposed method in

partitioning the design, with minimal impact on diagnosis accuracy and resolution. Also

we evaluated the proposed approach for sequential patterns and design with test

compression structures, and it shows the impact on simulation scores is larger comparing

with the design without test compression structure or using combinational pattern, which

could turns out to be large impact on diagnosis results. The future work will focus on

0.75

0.8

0.85

0.9

0.95

1

N=8 N=16 N=32

C =1

C=4

C=8

C=16

C=32

C=64

C=128

www.manaraa.com

87

8
7

better handing realistic defects and real application (sequential patterns and test

compression) when design partitioning is used.

www.manaraa.com

88

8
8

CHAPTER 5. IMPROVED VOLUME DIAGNOSIS THROUGHPUT

USING DYNAMIC PARTITIONING

In Chapter 4, we presented a static design partitioning method to reduce the

diagnosis memory footprint for large designs to improve the throughput of volume

diagnosis. The method in Chapter 4 is applied once for each design without using the

information of test patterns and failure files, and then diagnosis is performed on an

appreciate block(s) of the design partition for a failure file. Even though the memory foot

print of diagnosis is reduced the diagnosis quality is impacted to unacceptable levels for

some types of defects such as bridges, and for designs with test compression or using

multi-cycle sequential test patterns. In this chapter, a method based on dynamic design

partition is proposed to increase the throughput of volume diagnosis by increasing the

number of failing dies diagnosed within a given time T using given constrained

computational resources C. For each failure file, the proposed method first determines the

small partition needed to diagnose this failure, and then performs the diagnosis on this

partition instead of the complete design. Since the partition is far smaller, both the run

time and the memory usage of diagnosis can be significantly reduced better than when

earlier proposed static partition is used [65].

5.1 Introduction

Statistical yield analysis methods that leverage large volumes of diagnosis data

have been demonstrated to significantly improve yield enhancement rates in recent years

[42], [43], [44], [55], [56]. Diagnosis of a failing device can provide valuable defect

information, such as possible defect types, locations, physical topology and design

features, whereas statistical analysis of a large volume of such data can be applied to

effectively identify systematic issues and uncover dominant defect mechanisms. In order

for these methods to be relevant in a live manufacturing environment, high quality

diagnosis of hundreds, to tens of thousands of failing devices must be accomplished with

www.manaraa.com

89

8
9

a reasonable amount of computational resources and within a matter of days. This

diagnosis throughput objective can be more formally defined as follows. For a given

amount of time T and a limited amount of computational resource C (e.g. memory and

processors), assuming that t is the average run time and c is the computational resource

required for processing a single failing device, then T/t gives the number of failing dies

that can be diagnosed on a single processor within the given time, and C/c gives the

number of failing chips that can be simultaneously diagnosed under the constrained

computational resources. The throughput of volume diagnosis can be represented as (T/t)

× (C/c), i.e., the number of failing dies diagnosed within the time T by using constrained

computational resources C.

The continuously increasing size of modern designs poses two primary challenges

to achieving high diagnosis throughput with traditional scan diagnosis methods. The first

issue is that the time t for diagnosing a single failing dies keep increasing for a larger

design, because longer time is needed to simulate more gates. Therefore the number of

defective dies (T/t) diagnosed on a single processor within the time slot T is reduced.

The second issue is the extremely high memory required for processing the largest

of today’s designs with billions of transistors. Typically volume diagnosis throughput

can be maximized by processing multiple failing dies simultaneously using multiple

processors on one or more workstations. Unfortunately the total amount of physical

memory does not increase as fast as the number of CPUs for modern workstations. This

evolution of the computer platform has created a situation where traditional diagnosis

approaches are no longer optimal for the computer resources available and thus reduces

the overall throughput. For example, for a very large design with hundreds of millions of

gates, a diagnosis tool may require up to hundreds of giga bytes of memory. In this case,

computers with a small amount of memory may not be able to handle such a design. Even

for workstations with a large amount of memory and tens of CPUs, the number of

www.manaraa.com

90

9
0

concurrently running diagnosis programs will be very limited as only a few diagnosis

programs will use up all the memory, and most of the CPUs will simply stay idle.

Many works have been published on improving the performance for diagnosis

algorithm using various techniques, such as pattern sampling [57], fault dictionary [7],

[8], [8], [9], [37], machine learning [38] and GPU-based simulation [58]. However, the

high memory requirement for diagnosing very large designs is not addressed.

Because the effect of a defect in a circuit will typically have a very limited scope

within the entire design, one intuitive way to address these challenges is to perform

diagnosis with only a small partition of the original design that is necessary for a

successful diagnosis. By doing this, the resource utilization can be improved because

much less memory is required for each diagnosis job, and thus more jobs can be executed

at the same time. In addition, diagnosis runs faster on a small partition due to the reduced

number of logic gates to simulate. The main concern that needs to be addressed is that the

diagnosis quality may be impacted by this approach. In this work, we focus on

minimizing negative impact on diagnosis results where design partitioning is used.

Earlier in [36] an algorithm to partition a circuit logically into partitions was

proposed aiming to reduce the number of simulations for diagnosis. However, the

memory requirement for this circuit partitioning algorithm is not reduced since the entire

circuit needs to be simulated during diagnosis.

A static design partitioning algorithm was proposed in [54] to partition the design

into several nearly equal-size partitions while trying to minimize the negative impact on

diagnosis results. Since the diagnosis is conducted on the partitions, both the memory and

running time can be improved. However, some limitations have been observed for the

static partitioning method:

 The accuracy and resolution loss become worse with the increasing number of

partition blocks, which indicates that size of the partition blocks cannot be too

small.

www.manaraa.com

91

9
1

 Realistic defects such as bridge faults may not be identified if the two nodes of

the bridge faults are in different partition blocks.

In this chapter, we present a novel method to dynamically determine a partition

for a given failure file and then efficiently diagnose this failure on this partition with a

minimal negative impact on diagnosis quality using much less computational resources.

Comparing with the static partitioning method proposed in Chapter 4, the proposed

dynamic partitioning method has less negative impact on real defects especially for

bridge faults. In addition, the partition obtained by the proposed method is much smaller,

which will result in more improvement on throughput.

The rest of the chapter is organized as follows: In Section 5.2 we briefly discuss

preliminaries and the motivation for this work. In Section 5.3 the overall flow of failure

dependent design partitioning based diagnosis is discussed, followed by the details of the

proposed design partitioning algorithm. In Section 5.4 the experimental results are

presented. The work is summarized and conclusions are drawn in Section 5.5.

5.2 Preliminaries

In this section we present an overview of the approach we take to reduce the

memory footprint and improve the performance of diagnosis procedures with minimal

effect on the quality of diagnosis.

 Most of the diagnosis methods fall into two categories: cause-effect analysis [1]

and effect-cause analysis [21]. For cause-effect analysis, fault simulation is performed to

build a complete fault dictionary for all the faults used to guide diagnosis, typically stuck-

at faults. The diagnosis procedure looks up the fault dictionary to find a set of suspects

which best match the test fails by the failing device observed on the tester. The size of the

complete fault dictionary is proportional to O(F∙T∙O) where F is the number of faults, T is

the number of test patterns and O is the number of outputs. For design with millions of

gates, the cause-effect methods require a large amount of storage. This problem can be

www.manaraa.com

92

9
2

relieved by compressing the fault dictionary [7][8], nevertheless, the memory required for

saving the compressed fault dictionary is still proportional to the size of the design and

the number of test patterns rendering the inapplicable for large industrial designs with

hundreds of millions of gates [8].

Unlike the cause-effect methodology, the effect-cause procedures directly

examine the failing information and derive the suspect through fault simulation without

pre-computing the fault dictionary, thus the memory requirement is acceptable for

practical use. In this work, we focus on improving diagnosis throughput using effect-

cause procedures.

Path-tracing

Failing Pattern

Validation

Passing Pattern

Validation

S1

S2

S3

Figure 33. General Procedure of Effect-cause Diagnosis Algorithm

A typical flow of an effect-cause diagnosis procedure is as illustrated in Figure

33. It starts with an initial set of candidate suspects S1 found through path-tracing from

failing bits [14]. Here we refer to failing (passing) observation points observed on the

tester or in fault simulation as failing (passing) bits (of a test or test set) and we

interchangeably use them in this chapter. The initial candidates can be pruned by

validating the failing patterns. Each initial fault candidate is injected and fault simulated

to determine how well its response to tests matches the observed failing bits for each

www.manaraa.com

93

9
3

failing test pattern of the failing die. The set of candidate faults S2 after failing pattern

validation usually is much smaller than S1. The set S2 can be further reduced after passing

pattern validation. If a fault in S2 fails during the passing pattern validation, it is unlikely

to be the real defect thus will be discarded. The final diagnosis report consists of a set of

fault locations S3 which are more likely to be the real defects. From the sketch of

diagnosis procedure above one can observe that the main CPU efforts and memory are

expended in simulating the circuit (good-circuit simulation for path-tracing and faulty-

circuit simulation for failing and passing pattern validation). With the growing size of the

design, both the CPU time and memory for circuit simulation grows proportionally.

Intuitively, if we can shrink the size of the circuit under simulation, the throughput for

diagnosing larger designs could be enhanced.

It is observed in [21] that gates outside of the fan-in cone of the failing bits cannot

explain the observed faulty response. The fan-in cone of a failing (passing) bit refers to

the set of gates which can structurally reach that failing (passing) bit. This observation is

accurate if the effect of a fault is not masked by another fault. Even though this

observation is not strictly true on a per pattern basis it can be expected to hold when we

consider the union of fan-in cones of the failing bits of all failing patters. That is, the

defect site can be expected to lie in the part of the circuit under diagnosis (CUD) which is

the union of the fan-in cones of failing bits of all failing patterns. This assumption is also

used to obtain the initial set of candidate suspects in typical effect-cause diagnosis

procedures discussed above. Inspired by this observation, we believe that it is sufficient

and accurate enough to use the union of the fan-in cones of all the failing bits to do the

path-tracing and to prune the initial candidate suspects. We define the union of the fan-in

cones of all the failing bits of all the failing patterns as initial partition. An example of

initial partition is given in Figure 34 (a). Suppose that there is one defect f1 in the circuit

and taking the union over all tests the fault effects are captured at two observation points

O2 and O3. Starting from these two failing bits, structurally tracing backward will obtain a

www.manaraa.com

94

9
4

set of gates (in the shadowed region) called the initial partition in which the defect f1

should be included. It is obvious that the simulation results observed on O2 and O3 are

identical with using the full circuit for all test patterns. Next we analyze the impact on the

results in different stages if we only take the initial partition as the circuit under

diagnosis. In the sequel let S1 (S1’), S2 (S2’) and S3 (S3’) be the sets of faults obtained after

path tracing, failing pattern validation and passing pattern validation steps described

above when the complete circuit is used during simulation (while only the circuit

partition that includes the fan-in cones of all failing bits is used).

 Path-tracing stage: For every failing pattern, path-tracing techniques [14] trace

backward from the failing bits to examine the fault at each line using good-circuit

simulation values. A fault is considered as candidate defect if there is a parity-

consistent path from the fault to the failing bits. Since all the lines traced by path-

tracing algorithm are inside the fan-in cone of failing bits, and all the simulation

values are the same for initial partition and full circuit, thus the set of initial

candidates S1’ found after path-tracing using initial partition is the same as S1

found after structural path tracing.

 Failing pattern validation stage: The initial candidates are pruned by simulating

the failing patterns. A candidate that cannot explain any failing bits can be safely

removed from the set S1 (S1’). In addition, if the simulation result for a candidate

does not match the failing bits observed on the tester for a failing pattern, the fault

is unlikely to be the real defect and is discarded. For initial partition, since only

the failing bits are included, if a candidate can produce failures on some passing

bits then the failing response will not be observed and that candidate will be kept

in the initial suspect list. Therefore, the set of suspects S2’ after failing pattern

validation stage for using initial partition is a superset of S2.

 Passing pattern validation stage: Passing patterns can be used to filter out fake

suspects in S2 (S2’). A fault in S2 (S2’) is considered as a fake suspect if one or

www.manaraa.com

95

9
5

more passing patterns fail when the fault is simulated. Simulating the passing

patterns on initial partition may fail to drop some fake suspects due to the reduced

list of observation points. Figure 34 (b) gives an example. Suppose there is a fake

suspect f2 which passes the failing pattern validation and causes a passing pattern

failed at observation points at O4. If only using the initial partition, f2 will remain

in the suspects set as O4 is not included in the partition. Therefore, the number of

reported suspects in S3’ is typically larger than the number of suspects S3.

Note that for some other effect-cause diagnosis paradigms the diagnosis flow may

be different, such as doing passing pattern validation first and then validating failing

patterns. However, the circuit simulation is the essential procedure for the effect-cause

diagnosis algorithm. Here we take one typical flow to study the impact on the diagnosis

results by analyzing the simulation results when the design partitioning is used, and

similar analytical conclusions for other effect-cause algorithms can also be made.

Two metrics, accuracy and resolution, are used to measure the effectiveness of

diagnosis algorithms. Accuracy is defined as the ratio of the number of real defects

found by the diagnosis algorithm to the number of real defects in the circuit. Resolution is

defined as the average number of reported suspects per real defect. Based on the above

discussion, if we assume a single fault, diagnosis using the initial partition should not

impact the diagnosis accuracy, but the resolution may become worse. This is because

some fake suspects cannot be pruned during failing pattern and passing pattern validation

stages due to missing observation points.

The diagnosis resolution problem can be alleviated by including additional

passing bits, i.e., increasing the size of the initial partition. As shown in the above

example, if we include the fan-in cone of passing bit O4, the fake suspect f2 will be

dropped during passing pattern validation phase. Intuitively including more fan-in cones

of passing bits can reduce the resolution loss. However the increased partition size would

increase the run time and memory footprint for partition based diagnosis, and thus

www.manaraa.com

96

9
6

reduces the overall throughput improvement. Note that some passing observation points

may have no contribution in filtering the fake suspects if they cannot observe any initial

suspects, such as O1 in the above example as shown in Figure 34 (b), thus there is no

need to include their fan-in cones in the partition. Therefore the first challenge of design

partitioning for diagnosis becomes how to minimize the diagnosis resolution loss by

adding passing bits and their fan-in cones whilst keeping the partition size minimal.

Necessary Inputs

Failing Bits

f1

O1 O2 O3 O4

Necessary Inputs

Failing Bits

f1

O1 O2 O3 O4

f2

(a) (b)

Figure 34. Initial Partition Based on Failing Bits

The structural back tracing from the observation points to identify the necessary

gates to be simulated may not work well for sequential patterns which use more than one

capture cycle. This is illustrated through an example shown in Figure 35. The circuit is

expanded into two frames for simulating a sequential pattern with two cycles. Suppose

there are two faults (f1 and f2) causing two failing flip-flops (in red) for this sequential

pattern. Backward tracing in frame 1 can reach some flip-flops (marked in yellow) at the

boundary. In order to find all the gates that may produce failures on the failing bits, all

the gates in the fan-in cones of the reached flip-flops in the boundary should be included.

www.manaraa.com

97

9
7

Therefore the number of gates increases very quickly, especially when using sequential

pattern that has large sequence depth. As discussed before, both the run-time and the

memory usage of diagnosis depends on the number of gates in the circuit under

diagnosis, thus the bigger the partition, the less effective the partitioning method is.

Therefore, the second problem that needs to be carefully resolved is how to keep the

partition size small for sequential patterns.

PI PI

PO PO

Frame 0 Frame 1

Failing

Bits 1

Failing

Bits 2

f1 f1

f2 f2

Figure 35. Back Tracing for Sequential Pattern

5.3 Failure Dependent Design Partition Algorithm

In this section, considering the two problems discussed above, a dynamic design

partitioning is described. We first present the overall partition based diagnosis flow. Then

a back tracing method is proposed that considers the clock information to minimize the

partition size for sequential patterns. Finally the details of the approach for generating the

initial partition based on failing bits and the final partition based on passing bits are

given.

www.manaraa.com

98

9
8

5.3.1 Overview of the Proposed Methodology

Figure 36 illustrates the overview of the proposed methodology which consists of

two stages: preprocessing stage and diagnosis stage. In the preprocessing stage, every

test pattern is simulated on the good circuit, and the clock information is extracted to

facilitate the backward tracing which will be introduced in the next subsection. The full

circuit is simulated in the preprocessing stage but it is a one-time cost and it is done

before diagnosing the failing dies which takes a much longer time, therefore the cost can

be neglected compared to the whole volume diagnosis process.

After clock information is extracted for all test patterns in the preprocessing stage,

the diagnosis stage starts to process each failure file. For a given failure file, an initial

partition is generated by including all the gates in the fan-in cones of all the failing bits.

The pre-extracted clock information will be used to skip the unneeded gates and thus

reduce the final partition size during back tracing. In order to keep the partition to a

reasonable size, an upper bound of the partition size in terms of number of gates can be

pre-defined, such as 10% of the total number of gates of the original design. Note that the

initial partition is not constrained by the size limit. If the size of the initial partition

obtained is larger than the partition size limit, the design partition is generated only

including the fan-in cones of all failing bits. It has been observed that for most of the

cases, the number of failing bits is very limited even for the largest designs and therefore

the size of the initial partition is quite small. If the size of the initial partition is smaller

than the size limit, the algorithm will incrementally add more gates in fan-in cones of

selected passing bits into the partition until the desired partition size limit is reached.

After having the final design partition, the diagnosis can be conducted on it. Note that the

design partitioning procedure runs on the full circuit but only the circuit structure

information is needed. Comparing with the diagnosis procedure which requires large

memory for saving extra information such as simulation status of the circuit, the design

partitioning requires much less memory.

www.manaraa.com

99

9
9

Generate Initial

Partition Based

on Failing Bits

> Size

Limit?

Generate Final

Partition Based

on Passing Bits

Diagnose

Design
Partition

Design
Partition

Failure
File

Diagnosis
Report

Yes

No

Test
Patterns

Design
Netlist

Simulate Good

Circuit

Extract Clock

Information

Clock
Information

1: Preprocessing Stage 2: Diagnosis Stage

Figure 36. Overall Flow of the Proposed Methodology

5.3.2 Extract Clock Information

Simply utilizing the circuit structure information to trace back from the

observation points to find all the gates necessary for simulation can lead to unnecessarily

large partition sizes for sequential patterns, as seen in the previous example in Figure 35.

With the increasing number of frames in sequential patterns, more gates will be included

and then the algorithm will lose its effectiveness if majority of gates in the design are

included. To resolve this problem, we noticed that in a typical modern design, there are

many clock domains but only one, or a few clocks are activated during any given clock

frame. In addition, clock gaters are extensively used to reduce the power consumption.

Therefore, many scan cells may be idle for one particular test pattern, and there is no

need to simulate them. We can take advantage of such information during back tracing to

www.manaraa.com

100

1
0
0

dramatically reduce the partition size. Basically a scan cell will be traced in a frame only

if its clock is active in this frame and this cell can capture the fault effect.

PI PI

PO PO

Frame 0 Frame 1

Failing

Bits 1

Failing

Bits 2

f1 f1

f2 f2

Figure 37. Back Tracing with Clock Information

In the example illustrated in Figure 37, assuming there are 7 scan cells included in

back tracing in Frame 1, which are marked in yellow, and by the clock information of the

failing pattern we know that 3 out of 7 scan cells have active clocks in Frame 0, which

are marked in green. So when back tracing in Frame 0, we will only start with these 3

scan cells with active clocks, which will reduce the size of the set of included gates

compared to the example in Figure 35.

In order to take advantage of the clock information to minimize the partition size,

we first run good machine simulation for all the test patterns in the preprocessing stage.

For each test pattern the scan cells with active clocks at each time frame are collected.

The clock information is used to determine whether the back tracing process should

continue or stop at an observation point when the back tracing reaches that observation

point in the time frame boundary for a test pattern.

www.manaraa.com

101

1
0
1

5.3.3 Generation of the Initial Partition Based on Failing

Bits

The initial partition is a set of gates which are required for correctly simulating

the fault behaviors at all the failing bits of all the failing patterns. Line 1-7 in Figure 38

gives the pseudo code for back tracing failing bits per failing pattern. When back tracing

a failing bit, its corresponding clock information (the scan cells with active clocks in each

time frame) is applied to prune the size of the set of traced gates. Whenever the back

tracing reaches a scan cell at a time frame boundary, it will check the corresponding

extracted clock information to see if the cell is active or not. If the scan cell is not active,

the back tracing will stop, otherwise it will continue to trace back from that scan cell in

the previous frame if it exists.

Initial Partition Based on Failing Bits

0: Let P be the initial partition and initially P = Φ.

1: For each failing pattern Ti

2: Let FBi be the set of failing bits for failing pattern Ti

3: Let CLKi be the saved clock information of Ti

3: For each failing bit fbij in FBi

4: Let Gij be the set of gates obtained by back tracing from fbij using clock

information CLKi

5: P = P Gij

6: End For

7: End For

Figure 38. Initial Partition Generation Procedure

www.manaraa.com

102

1
0
2

Final Partition Based on Passing Bits

0: Let P be the initial partition.

1: For each failing pattern Ti

2: Let FBi be the set of failing bits for Ti

3: Let Oi be the set of observation points with active clocks at the last

frame of Ti

4: Let PBi = Oi – FBi be the set of passing bits with active clocks for Ti

5: Let CLKi be the saved clock information of Ti

6: For each passing bit pbij in PBi

7: Let Gij be the set of gates obtained by back tracing from pbij using

clock information CLKi

8: Compute SGR(pbij)

9: End For

10: End For

11: Sort all the passing bits pbij by SGR

12: While |P| < partition size limit

13: Pick an unselected passing bit pbij with highest SGR

14: P = P Gij

15: Mark pbij selected

16: End While

Figure 39. Procedure of Final Partition Generation Based on Passing Bits

The initial partition obtained from back tracing all failing bits using clock

information is a minimal set of gates that allows us to correctly simulate the values on

those failing bits for all failing test patterns. However, if we only use the initial partition

to run the diagnosis, there may be still many fake suspects due to lacking passing

observation points. In our proposed methodology, if the size of the initial partition is

www.manaraa.com

103

1
0
3

under the user defined size limit, we will continue to expand the partition until the size

limit is reached to further reduce the number of suspects.

5.3.4 Generation of the Final Partition Based on Passing

Bits

This section describes how the passing bits are selected for the final partition.

Under the partition size constraint, the number of passing bits that can be included is

limited. The passing bits with higher potential to prune the fake suspects should have

higher priority to be included. If we assume a single fault in the circuit, a fake suspect

will be excluded from the initial suspect list if we can observe a failure on a passing bit

during failing pattern validation or passing pattern validation stages. Therefore, a passing

bit that can observe a larger number of fault effects from the initial suspects after path-

tracing has more capability to remove the fake suspects.

The challenges for selecting the best passing bits come from: 1) the initial

suspects are unknown without conducting path-tracing; 2) the number of fault effects that

can be captured by an observation point is unknown before fault simulation. In this

method, we proposed some heuristics to find passing observation points that may have a

better chance to differentiate the initial suspects.

We first assume that all the gates in the initial partition could possibly have

defects causing the failure. This is a reasonable assumption as the initial partition is

comprised of the fan-in cones of all the failing bits, and any defective gate in the fan-in

cone of the failing bits can possibly explain one or more failing bits. In order to measure

how well a passing bit can capture the fault effects from the initial partition, a heuristic

which is defined as shared gate ratio (SGR) [54] between a passing bit and the initial

partition is employed. The SGR for a passing bit pbi with the initial partition P is defined

as:

www.manaraa.com

104

1
0
4

i

i
i

C

PC
pbSGR

)(

 Equation 5

where Ci is the set of gates obtained by back tracing from pbi, P is the set of gates

representing the initial partition. |Ci ՈP| represents the number of common gates between

Ci and P. A passing bit with larger |Ci Ո P| implies it has a higher chance of observing the

faults effects prorogating from the initial partition, i.e., the initial suspects by our first

assumption. And using SGR can prevent the selected passing bit from including too many

unnecessary gates. With this metric we can compute the SGR for each passing bit, and

then sort them by the SGR. The top ranked passing bits will be added into the final

partition. Figure 39 gives the overall procedure.

Similarly to the failing bit back tracing, the passing bit back tracing is done per

failing test pattern. For each test pattern, we are more interested in the observation points

(line 3) with active clocks since the observation points without active clocks do not

capture the fault effects. Then the active passing bits can be computed as in line 4.

Usually the number of active observation points in the last frame of a test pattern is much

smaller compared to the total number of observation points. The clock information is

used to guide the passing bit back tracing so that the set of gates obtained is minimal.

After back tracing, the SGR can be computed. Note that for a passing bit under two

different patterns, we consider it as two different passing bits with different SGRs. All the

passing bits can be sorted in descending order of SGR, thus the top passing bit is the one

that can capture the most fault effects from the initial suspects. The final partition is then

obtained by incrementally adding the gates traced from the top ranked passing bits until

the user defined limit is reached.

Since both the initial partition and the final partition are generated when

diagnosing each failure file, potential runtime overhead could be introduced for the

diagnosis. Next the time complexity for the above two procedures are studied. Assume

that there are N failing (M passing) bits traced for all test patterns, and also assume that

www.manaraa.com

105

1
0
5

the average number of gates traced from an observation point is V, and then the time for

back tracing all the failing (passing) bits is O(V∙N) (O(V∙M)). The time complexity for

sorting the passing observation points is O(M∙lgM), and adding the fan-in cones of the top

ranked passing observation points at most takes O(V∙M). Therefore, the total time

complexity for generating the initial partition and the final partition can be summarized

as O(M∙(V+lgM) + V∙N).

Note that the proposed partitioning method is also applicable for designs with on-

chip test compression, such as EDT [64]. In this case, the observation point is the output

of the test compactor whose inputs are several internal observation points (scan cells).

When back tracing a failing/passing observation point, all the internal observation points

that feed into the observed compactor output will be traced. Clock information extracted

in the preprocessing stage can be applied to reduce the number of internal observation

points that need to be traced in the same way.

5.3.5 Layout-aware Partition Generation

Scan diagnosis combining physical layout can leverage design layout information

to improve diagnosis accuracy and resolution, eliminate physically impossible suspects

and provide better defect reports in terms of layout terms [66], [67]. For design

partitioning based diagnosis, if the physical node which relates to the failure is not

included in the partition, the diagnosis result will be impacted. Figure 40 shows an

example. In Figure 40, gate A and B are bridged due to manufacturing imperfection and

it behaves as that gate B is dominated by A, in other words, A is the aggressor and B is

the victim. Therefore, the initial partition will include the faulty gate B and it is possible

that gate A is not in the partition. If this is the case, the layout-aware diagnosis cannot

identify the correct aggressor thus the diagnosis result is not accurate.

In order to solve this problem, an extra step called layout-aware partition

generation is introduced if the layout data is available and the partition size after

www.manaraa.com

106

1
0
6

including fan-in cones of failing bits is still within the size limit. The layout-aware

partition is generated based on the initial partition. Based on the assumption that all the

gates in the partition can possibly be fault gates, the gates which are physically close to

the gates in the initial partition has more chance to be related to the defect.

 A B

Failing Bits

Aggressor
Victim

Figure 40. Example of Misdiagnosed Physic Defect Based on Partition

 A B

Failing Bits

Aggressor
Victim

Figure 41. Example of Layout-Aware Partition

www.manaraa.com

107

1
0
7

The first step of layout-aware partition is to find a set of gates which are physical

neighbors of the gates in the initial partition. The physical layout database is queried and

all the gates which are within a certain distance of the gates in the initial partition are

considered as the candidate physical neighbors. Those candidate gates are ranked based

on the distance to the gates in the initial partition. A gate has shortest distance to some

gates in the initial partition has more chance to cause the failure. From the top ranked

gate, the fan-in cone of that gate is traced and all the gates in that fan-in cone are added

into the partition. Note that for those gates, since they do not propagate any failure, we

are only interested in its good machine value and its good machine value is used to

determine whether it can active the faulty site or not. We keep adding the fan-in cones of

the top ranked gates till the partition size reaches the user defined size limit. Figure 41

shows an example of layout-aware partition in which the fan-in cone of the aggressor

gate A is included, such that the good machine value of gate A can be determined.

5.4 Experimental Results

Extensive experiments were performed to validate the efficiency and

effectiveness of the proposed dynamic design partitioning method. We first conducted

experiments on several industrial designs in Section 5.4.1 to show the performance of the

partitioning method as well as the impact on diagnosing various defect types. Then in

Section 5.4.2, an experiment was performed using bridge faults to compare the impact on

diagnosis results for the dynamic partitioning method versus the static partitioning

method [54] we proposed earlier. Section 5.4.3 presents the throughput improvement for

a practical example. We also evaluated some industrial designs with physical layout-

aware information and test compression, as shown in Section 5.4.4 and Section 5.5.5

respectively.

www.manaraa.com

108

1
0
8

5.4.1 Partitioning Results and Impact on Diagnosis Results

In order to validate the efficiency of the proposed dynamic design partitioning

algorithm as well as evaluate the impact on diagnosis, we conducted controlled

experiments with various types of randomly injected defects. The experiments were

performed on four industrial designs with gate counts ranging from 2.0 M to 9.8 M. Table

10 summarizes the characteristics of these designs where the second column gives the

number of gates and the third column gives the number of flip-flops. The total number of

test patterns used in the experiments is given in column 4, followed by the number of

capture cycles for the test patterns. All the test patterns used in the experiments are

generated for stuck-at faults.

Table 10. Design Information

Designs #Gates #FFs #Tests #Cycles

D1 2,025,841 133,673 1,000 2

D2 3,152,005 318,723 176 3

D3 5,564,513 375,520 1,024 2

D4 9,806,154 650,897 1,200 1

The failures considered in the experiments consist of single and multiple stuck-at

faults, bridge faults and net open faults. The stuck-at failures were generated by randomly

injecting single, double, triple and four stuck-at faults at arbitrary locations in the circuit

with random stuck-at values. Similarly, for a bridge fault, two nets are first randomly

selected, and then an and-bridge/or-bridge fault is injected on this selected net pair. The

net open fault is injected on two branches of a randomly selected stem.

www.manaraa.com

109

1
0
9

The metrics used to evaluate the diagnosis quality are accuracy and resolution.

The accuracy for each failing case is defined as the number of correct locations reported

by diagnosis (SD) divided by the number of locations we injected (SI). For bridge faults,

the accuracy is 1 only if the injected pair of locations is correctly identified otherwise it is

0. The net open fault requires the open branch being correctly identified. The accuracy

for a defect type is determined by calculating the average over all the cases. The

resolution for each case is computed as SD/ST [24], where ST is the number of suspects

reported by the diagnosis tool. The resolution is 0 if the number of suspects is 0. Again

the resolution reported for a defect type is the average resolution over all the cases.

In the experiments, our first interest is to evaluate the accuracy and resolution

from diagnosis with a dynamic partition as compared to diagnosis with a complete

design. The impact on accuracy is calculated as (acc_orig–acc_dp)/acc_orig, where

acc_orig is the diagnosis accuracy based on the original design and acc_dp is the

accuracy using dynamic partitioning. Similarly the impact on resolution can be computed

as (res_dp –res_orig)/res_orig, where res_orig is the resolution for using original design

and res_dp is the resolution for using partition. For both accuracy and resolution impact

metrics, a larger number indicates a worse result. Table 11 presents impact on diagnosis

results and performance of dynamic partitioning method on 4 industrial designs with

different fault types. In the experiments, we set the partition size limit to be 10% of the

total gate counts of the original circuit. The first column lists the names of the designs,

followed by the defect types. The number of cases is given in column 3. The diagnosis

impact is shown in column 4, including two sub-columns for impact on accuracy (Acc)

and resolution (Res). The average CPU time for generating a partition (Par) and for

diagnosing the failure (including partitioning time) based on that partition (Diag) are

presented in column 5, while the time is normalized by dividing it by the total time for

diagnosing failure on the full design. The last rows show the average partition size over

all the cases. The partition size is reported as the ratio of the number of gates included in

www.manaraa.com

110

1
1
0

the partition to the total number of gates of the original design as a percentage. For each

design, experimental results for multiple stuck-at faults, bridge faults, open faults and

average results over all defect types are reported.

Table 11. Diagnosis Impact and Performance for the Proposed Method

Design Defects #Cases
Diagnosis Impact CPU Time

Size %
Acc (%) Res (%) Par (%) Diag (%)

D1

1-SAF 110 0.00 0.05 0.53 40.53 1.87

2-SAF 110 0.00 4.74 0.57 43.62 2.73

3-SAF 110 0.00 5.99 0.79 47.60 3.81

4-SAF 110 0.22 3.46 0.70 50.83 4.42

AND 105 0.00 2.95 0.86 42.89 1.73

OR 110 0.00 3.98 0.78 44.79 1.72

OPEN0 100 1.01 8.44 0.47 39.18 1.10

OPEN1 100 0.00 2.73 0.42 39.18 1.64

Avg. - 0.15 4.04 0.64 43.58 2.38

D2

1-SAF 100 0.00 0.52 3.11 35.99 0.34

2-SAF 100 0.51 9.77 3.18 37.47 0.63

3-SAF 100 0.32 11.68 3.23 37.36 0.94

4-SAF 100 0.00 9.95 3.38 38.03 1.04

AND 150 0.00 0.01 4.83 46.87 0.45

OR 176 0.00 -0.30 4.83 46.51 0.45

OPEN0 100 2.02 12.92 3.84 48.21 0.39

OPEN1 100 -1.01 12.78 3.74 47.45 0.37

Avg. - 0.23 7.17 3.77 42.24 0.58

D3

1-SAF 100 0.00 2.10 1.09 36.74 0.36

2-SAF 100 0.00 0.78 1.54 38.44 0.66

3-SAF 100 0.00 3.02 2.23 40.04 1.12

4-SAF 100 0.32 3.49 2.49 40.82 1.30

www.manaraa.com

111

1
1
1

Table 11. Continued

AND 129 0.00 0.78 1.27 38.14 0.59

OR 114 0.00 0.88 1.28 38.62 0.56

OPEN0 100 0.00 -0.03 2.56 46.79 0.57

OPEN1 100 0.00 1.03 1.98 44.86 0.35

Avg. - 0.04 1.51 1.80 40.56 0.69

D4

1-SAF 99 0.00 0.92 2.91 45.07 0.99

2-SAF 99 0.00 3.08 3.28 43.00 1.26

3-SAF 98 0.00 5.50 3.49 42.98 1.67

4-SAF 99 0.31 6.95 4.05 42.83 1.92

AND 168 0.00 -0.08 4.25 50.20 1.28

OR 169 0.00 0.00 3.86 48.52 1.21

OPEN0 100 0.00 -1.12 2.78 50.06 1.16

OPEN1 100 0.00 0.38 2.57 50.81 1.15

Avg. - 0.04 1.95 3.40 46.68 1.33

n-SAF: n stuck-at faults; AND: and-bridge fault; OR: or-bridge fault; OPEN0/1: net
open 0/1; Avg: average results for all defect types

From the data in Table 11, it can be seen that the negative impact on diagnosis

results (accuracy/resolution) is very small. The accuracy remains the same for most of the

cases, and drops only slightly for the remaining cases. We can observe that the accuracy

loss for multiple faults is worse than the single fault situation. For diagnosing multiple

faults, usually a minimum set of faults is selected which explain all the failing patterns

with the fewest passing pattern mismatches. When using partitioning, due to missing

observation points there could be a smaller set of faults that could completely explain all

the failing patterns without causing passing pattern mismatch. This smaller set of faults

often is preferred and thus will exclude some real faults which cause accuracy loss. For

the single fault case the resolution is only minimally worse, while the resolution loss

increases when there are more faults. This is because for multiple faults, usually the

www.manaraa.com

112

1
1
2

number of initial suspects is larger and it requires more passing bits to prune the fake

suspects. Without a sufficient number of passing observation points, the number of

suspects reported by diagnosis increases. However for some corner cases, a better

diagnosis result is achieved by partition based diagnosis, which is indicated by the

negative number. These cases imply potential improvements for current diagnosis

algorithm, and are being investigated. As noticed in [43], the statistical techniques

actually are much more tolerant of resolution loss than accuracy loss. Therefore, the final

yield learning results are expected to be impacted negligibly.

The data in Figure 42 further presents the detailed distribution of suspect count

change for diagnosis using a small partition compared to diagnosis using the original

design. For each defect type of each design, we compute the difference between the

suspect count resulting from using a partition and the suspect count resulting from using

the full design. In Figure 42, each stacked column represents the distribution of suspect

count change for a defect type for a design. The change is segmented into five categories:

fewer suspects (<0), no change (=0), between 1 and 5 ([1, 5]), between 6 and 10 ([6,

10]), and larger than 10 (> 10). For many of the designs and various fault types, more

than 90% of the cases have a suspect count equal to or less than that of diagnosis using

the original design. In only a few cases the suspect count does increase by more than 10.

From the Table 11, we can also see that the time for generating a partition is small

compared to the total diagnosis time using the original design. Most of the cases consume

less than 4% of the original diagnosis time. Additionally, the diagnosis performance

based on a partition is improved by more than 2X for most cases, which demonstrates

that by using the dynamic partitioning we can diagnose more failing chips within an

amount of time, and thus improve the throughput. The diagnosis time improvement

mainly comes from two parts: good machine simulation and faulty machine simulation.

The good machine simulation is typically conducted by traversing all gates. With fewer

gates to be simulated for a partition, the runtime can be significantly improved. Since the

www.manaraa.com

113

1
1
3

faulty machine simulation is performed for all the suspects and usually it is event driven,

the small partition size will not typically reduce the simulation events significantly but

can still result in some faulty machine runtime improvement.

Figure 42. Distribution of the Suspect Count Change

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D1_1-SAF
D1_2-SAF
D1_3-SAF
D1_4-SAF

D1_AND
D1_OR

D1_OPEN0
D1_OPEN1

D2_1-SAF
D2_2-SAF
D2_3-SAF
D2_4-SAF

D2_AND
D2_OR

D2_OPEN0
D2_OPEN1

D3_1-SAF
D3_2-SAF
D3_3-SAF
D3_4-SAF

D3_AND
D3_OR

D3_OPEN0
D3_OPEN1

D4_1-SAF
D4_2-SAF
D4_3-SAF
D4_4-SAF

D4_AND

< 0 = 0 [1, 5] [6, 10] > 10

www.manaraa.com

114

1
1
4

Figure 43. Distribution of the Partition Size for Single Stuck-at Fault

Figure 44. Distribution of the Partition Size for Two Stuck-at Faults

D1

D2

D3

D4

0

1

2

3

4

5

6

7

8

9

10

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

S
iz

e
%

1-SAF

D1

D2

D3

D4

0

1

2

3

4

5

6

7

8

9

10

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

S
iz

e
%

2-SAF

www.manaraa.com

115

1
1
5

Figure 45. Distribution of the Partition Size for Three Stuck-at Faults

Figure 46. Distribution of the Partition Size for Four Stuck-at Faults

D1

D2

D3

D4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

S
iz

e
%

3-SAF

D1

D2

D3

D4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

S
iz

e
%

4-SAF

www.manaraa.com

116

1
1
6

For clarity, we should mention that the proposed procedure performs good

machine simulation using the complete design and all test patterns once for a design

during the preprocessing step to obtain information on clocks active during in the tests.

For volume diagnosis where a large number of failing devices are diagnosed the run time

for this preprocessing step compared to the time to diagnose a large volume of failing

dies is negligible.

In the last column of Table 11 we give the partition size which is represented by

the percentage of gate count of the partition compared to the original design. The results

show that the number of gates needed for performing effective diagnosis is a very small

portion of the original design; most cases only need less than 3% of the original circuit.

While the smaller size of the partition enables the diagnosis algorithm to run faster, it also

significantly reduces the memory footprint of diagnosis as the memory consumption is

proportional to the number of gates. Figure 43, Figure 44, Figure 45 and Figure 46 give

the partition size distribution for single, two, three and four stuck-at faults respectively.

The failure files are ordered by the partition size along the X-axis and the Y-axis is the

partition size represented by the percentage of the original design. From the distribution

one can notice that most of the cases have very a small partition size (less than 3% of the

total gate count of the original design). Only a few corner cases have a partition size

larger than 10%. These rare cases exceed the 10% limit because no size limit is set for the

initial partition. For these cases, the initial partition includes more than 10% of gates due

to the huge number of failing bits. These cases can be handled by failing pattern sampling

or failing bit sampling if a strict partition size limit needs to be enforced.

Summarizing the data in Table 11 we conclude that the throughput of volume

diagnosis, i.e. the number of failing dies diagnosed within a given time and using

computational resources, can be increased by an order of magnitude.

www.manaraa.com

117

1
1
7

5.4.2 Comparison Experiments for Bridge Fault

Another experiment was conducted to compare impact on diagnosis of bridge

faults for dynamic partitioning and the earlier proposed static partitioning [54]. In [54],

the design is statically partitioned into several smaller design blocks and then the

diagnosis is run on the blocks. For bridge faults, there is a chance that the two nodes of

the bridge fault belong to different blocks and thus the bridge fault cannot be correctly

identified. The results for the experiments performed on two ISCAS’89 benchmark

circuits (s38417 and s38584) are presented in Table 12. The bridge defect instances are

generated by using physical layout information. The third column in Table 12 gives the

impact on accuracy and resolution for the method presented in [54] when the design is

partitioned into 5 blocks, i.e., the number of gates in each block is about 20% of the full

circuit. For comparison purpose, the size limit is set to be 20% for the proposed dynamic

partition method, and the results are given in the last column. Clearly one can see that the

dynamic partitioning has far less negative impact on both the accuracy and resolution as

compared to the static partitioning with a similar partition size.

Table 12. Impact on Physical Bridge Faults

Circuits #Cases

Static Partitioning [54] Dynamic Partitioning

Acc (%) Res (%) Acc (%) Res (%)

s38417 400 24.9% 46.13% 1.2% 8.10%

s38584 420 29.3% 46.71% 1.5% 16.9%

www.manaraa.com

118

1
1
8

5.4.3 A Practical Example of Throughput Improvement

In this section we present the throughput improvement results for a dynamic

partitioning based diagnosis flow implementation using master-slave architecture. A

master process first uses the proposed dynamic partitioning algorithm to generate a sub-

circuit for a given failure file. Then a slave process diagnoses this failure file based on

the generated sub-circuit. For the master process, the complete design is needed to

generate the partition and therefore the memory is not reduced. However, for the slave

process, it requires much less memory compared with the regular diagnosis because the

sub-circuit used is much smaller than the original design. Figure 47 illustrates the

concept of the master0slave diagnosis architecture based on dynamic partitioning.

Figure 47. Dynamic Partitioning Based Master-Slave Diagnosis Architecture

www.manaraa.com

119

1
1
9

We consider a practical application scenario with two machines: M1 (8 CPU

Cores with 48 Giga Bytes memory) and M2 (4 CPU Cores with 16 Giga Bytes memory).

For a design D5 with 23.6 million gates, only two regular diagnosis processes can

concurrently run on M1 using the original design, while M2 is unusable to diagnose such

a big design due to the limited memory. For the dynamic partitioning based diagnosis

using master-slave architecture, the master process can run on one processor of machine

M1 and the slave processes can run on other processors of M1 and M2. We took 111 real

silicon failure files of D5 and tried different setting of master-slave structure to evaluate

the throughput improvement.

Figure 48 shows the throughput improvement results for the master-slave

diagnosis architecture. The throughput improvement is computed as the ratio of the

runtime of diagnosing all failure files using the original diagnosis flow to the runtime

using the proposed dynamic partitioning based diagnosis flow on master-slave

architecture. The original diagnosis (Org.) runs two parallel diagnosis processes on M1.

For the dynamic partitioning based diagnosis, different settings with various numbers of

slaves (5, 7, 8, 10, and 11) have been tried. When dynamic partitioning based diagnosis

with 5 slaves are used, the throughput can be dramatically improved by about 8X. As

mentioned before, the throughput improvement mainly comes from two parts: one can

concurrently run more diagnosis jobs and each diagnosis process runs faster. Higher

throughput improvement can be achieved with more slaves. From Figure 48 we can see

that the throughput can be improved by 14.6X with 11 slave processes. It is observed that

the improvement gradually saturated with more and more slaves, which is due to the

continuously increased load of master process. After master process is fully loaded,

additional slaves can’t improve the throughput simply because master can’t generate

partition fast enough to keep all slaves busy.

www.manaraa.com

120

1
2
0

Figure 48. Throughput Improvement Results

This experiment proves that the proposed dynamic partitioning based diagnosis

can dramatically improve the diagnosis throughput for large industrial designs. Note that

the master-slave architecture is only one possible approach to implement the dynamic

partitioning based diagnosis. There are other possible ways to use the dynamic

partitioning to improve the diagnosis throughput and the dynamic partitioning should not

be limited to master-slave architecture.

5.4.4 Layout-aware Design Partitioning Results

As we mentioned, some physical defects such as dominant-bridge defect may be

misdiagnosed if the nodes which are related to the failure are not included in the partition.

In this section, some experiments are conducted to evaluate the impact on diagnosis

7.96X

9.5X

11.4X

13.7X 14.6X

1

3

5

7

9

11

13

15

Org. 1M+5S 1M+7S 1M+8S 1M+10S 1M+11S

Throughput Improvement (X)

www.manaraa.com

121

1
2
1

results, as well as the performance improvement in terms of runtime and memory usage

reduction.

Table 13. Partitioning Results for Layout-aware Design Partitioning

#Gates #Patterns #Cases Acc. (%) Res. (%) Part_Size (%)

1,393,304 149 50 0.00 0.00 10.52%

Table 13 gives the experimental results for a design with layout database. We

randomly injected physical dominant bridge defects into the circuit to create failure cases.

A failure case is considered as correctly diagnosed only if both the aggressor and victim

are identified. The design D6 has around 1.4 million gates using 149 test patterns. 50

failure cases are created. We set the size limit to 10% of the total number of gates of the

design. Column 4 and 5 show the impact on accuracy and resolution respectively,

followed by the average partition size. The memory reduction and runtime improvement

are given in the last two columns. From the results we can see that with the extra layout-

aware design partitioning step, actually the diagnosis results including accuracy and

resolution do not change.

We further evaluated the diagnosis throughput improvement when layout-aware

design partitioning is used for big industrial designs. The master-slave distributive

diagnosis structure, as shown in Section 5.5.3, is used to compute the throughput

improvement. In this experiment, a machine with 8 CPU processor and 32 giga bytes

memory are used and “1 master + 5 slaves” structure is implemented. Two industrial

designs D7 and D8 are included, and the throughput improvement is shown in Table 14.

www.manaraa.com

122

1
2
2

The results prove the efficiency of the layout-aware design partitioning in improving the

diagnosis throughput.

Table 14. Throughput Improvement for Layout-aware Design Partitioning

Design Size # Cases #Patterns
Throughput

Improvement

D7 25.6 M 111 1,000 38.6 X

D8 26 M 55 9,000 15.3 X

5.4.5 Design Partitioning Results with Test Compression

For designs with test compression as shown in Figure 30, the backward tracing

fan-in cone from an external observation point may lead to a much larger fan-in cone

than backward tracing from a normal observation point without test compression. This is

because for design with test compression, normally a number of internal observation

points (scan cells) are grouped and connected to a single external observation point.

Tracing the fan-in cone from an external observation point is equivalent to tracing the

fan-in cones of many internal observation points at the same time and the number of

internal observation points traced is determined by the test compression structure, usually

by the test compression ratio. The test compression structure can lead to the partition size

growing fast, which may prevent from adding enough passing bits to reduce the impact

on diagnosis results. The clock information is leveraged to ease the problem: when

tracing from the external observation point, the internal observation points with inactive

clock will not be traced. In order to demonstrate the proposed dynamic design

partitioning can also be applied for design with test compression without causing too

www.manaraa.com

123

1
2
3

much impact on diagnosis results, we designed an experiment in which an industrial

design D9 is included. The design has around 9.8 million gates with several EDT test

compressors inside to archive about 70X test compression ratio.

Table 15. Partitioning Results with Test Compression

Defects Acc (%) Res (%) Speed-up Memory Reduction Partition Size (%)

1-SAF 0.00% -0.38% 3.80 7.91 9.75%

2-SAF -7.41% -7.40% 3.15 3.84 11.05%

OPEN 0.00% 9.30% 3.15 7.73 9.58%

AND 0.00% 0.46% 4.73 7.52 9.70%

Avg. -1.85% 0.49% 3.71 6.75 10.02%

Table 15 presents the experimental results. 256 test patterns are used. We

randomly injected single stuck-at fault, two stuck-at faults, open fault and AND-bridge

fault to create failure files. The partition size is limited to 10% of the full design. For each

defect type, 20 failure cases are created. The impact on accuracy and resolution are

measured in the same way as the experiments in Section 5.4.1. Column 3 gives the

runtime improvement, and the memory reduction is showed in column 4. The partition

size is given in the last column. The results confirm that the proposed dynamic

partitioning method is applicable for design with test compression structure.

www.manaraa.com

124

1
2
4

5.5 Conclusions

In this Section we present a dynamic design partitioning method based on failure

file information to improve diagnosis throughput by reducing the memory footprint and

improving the runtime of the diagnosis. We first generate an initial partition based on the

failing bits from the failure file to include all the possible fault candidates and all the

necessary gates for simulating these candidates. Then additional passing bits are selected

based on the SGR heuristic and their fan-in cones are added into the partition to further

prune the fault candidates list. Clock information is used to effectively handle the

sequential patterns to keep the partition size small.

The experimental results for various injected defects on four industrial designs

demonstrate that the proposed method: 1) significantly reduces the memory usage and

improves the runtime of diagnosis; 2) has minimal impact on the diagnosis results for

various defect types. For a given time and fixed computational resources, the faster

diagnosis procedure enables diagnosing more failing chips and the smaller memory

footprint allows more diagnosis jobs to be executed in parallel. Therefore, the throughput

of volume diagnosis can be dramatically improved. A practical application example

demonstrates that 14.6X throughput improvement can be achieved compared with the

conventional diagnosis. Comparing with the previously proposed static partitioning

method [54], the dynamic partitioning method can dramatically reduce the accuracy and

resolution loss on diagnosing certain realistic defects such as bridges. The experimental

results also show that the proposed method is applicable for layout-aware diagnosis and

designs with test compression structure.

www.manaraa.com

125

1
2
5

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

For designing and manufacturing ICs with 65nm or below technology, there are

numerous yield challenges that have to be overcome. Meeting the yield goal is increasing

more difficult but critical to reaching time-to-market, product quality and profitability

goals for semiconductor companies. Recently diagnosis-driven yield improvement has

been proved to be successful in industry for ramping up the yield to an acceptable and

stable level. In diagnosis-driven yield improvement flow, diagnosis is performed on

devices that fail manufacturing tests, and then either PFA is involved to examine deeper

at the faulty location or statistical information over the diagnosis results of a volume of

failing devices is learned to identify the systematic yield limiters. Two essential

requirements for diagnosis are desired in order to ensure successful and rapid yield ramp.

The first requirement is the diagnosis tool should report high-quality results in terms of

accuracy and resolution. The second requirement is the diagnosis tool should possess the

capability in handling a volume of failing dies within a given time. In this dissertation,

we focused on the problems existing in these two requirements.

We first resolve the challenges of accurately diagnosing the defects inside the

library cells. In Chapter 3, we first proposed a method to accurately identify the defects

inside the library cells when using multi-cycle test patterns. The multi-cycle test patterns

can lead to more possible excitation conditions such that the existing extraction methods

become less accurate. In addition, the realistic cell internal defects may produce different

faulty values at different capture cycles, or only produce faulty values on some particular

capture cycles. Thus the traditional logic diagnosis techniques may not accurately find

the defective cells since most of them use stuck-at fault model to identify defect locations

[35]. In the proposed methodology, we enhanced an excitation condition extraction

procedure by backtracing from the observation points with fault effects during fault

www.manaraa.com

126

1
2
6

simulation to find the most possible input conditions that cause the fault effects.

Additionally, a new method is proposed to locate defective cell locations without using

stuck-at fault model. Experimental results on industrial designs proved the effectiveness

of the proposed methodology.

With the increasing transistor density of more design, both the runtime and CPU

footprint for diagnosing failing device are also keep increasing, which poses a big

challenge for the throughput of volume diagnosis. Chapter 4 presented a method to

statically partition a design under diagnosis into smaller sub-circuits together with a

diagnosis flow at the sub-circuit level. The circuit structure information is used to

partition the circuit. A heuristic called shared gate ratio (SGR) is proposed as a metric for

grouping the fan-in cones of the observation points. Fan-in cones with higher SGR tend

to be put into the same partitioning block. The diagnosis throughput is improved because

more diagnosis jobs can be run concurrently and each job runs faster due to the reduced

memory. The impact on diagnosis results in terms of accuracy and resolution are

evaluated. The results demonstrate that the presented method can reduce the diagnosis

memory footprint with small impact on diagnosis results.

In Chapter 5, a method based on dynamic design partition is presented to increase

the throughput of volume diagnosis by increasing the number of failing dies diagnosed

within a given time T using given constrained computational resources C. For each

failure file, the proposed method first determines the small partition needed to diagnose

this failure, and then performs the diagnosis on this partition instead of the complete

design. Since the partition is far smaller, both the run time and the memory usage of

diagnosis can be significantly reduced better than when earlier proposed static partition is

used. Extensive experiments were conducted on several large industrial designs to

validate the proposed method. It has been observed that the typical partition size for

various defects is less than 3% of the size of the original design. Also diagnosis runs

much faster (>2X) on the partition. Combining these two factors, the throughput of

www.manaraa.com

127

1
2
7

volume diagnosis can be improved by an order of magnitude. A master-slave distributive

diagnosis structure is also implemented, and throughput improvement is evaluated on

industrial designs. The results show that the throughput improvement can achieve about

14.6 X. We future designed some experiments to evaluated the impact on layout-aware

diagnosis results as well as the yield improvement. In addition, designs with test

compression are also used to evaluate the impact on diagnosis results and throughput

improvement. All the results demonstrate that the proposed dynamic design partition

method is efficiency in improving the throughput and applicable for practical designs.

6.2 Future Work

The completed research successfully addressed some problems existing in

diagnosis quality and throughput of volume diagnosis. Future research can further

improve the accuracy in identifying the defect and enhance the throughput base on circuit

partitioning methods.

 The work presented in Chapter 4 provides a method to improve the accuracy for

identifying the cell internal defects and the corresponding failing conditions. Future

research work can focus on using the extracted failing conditions to locate the transistor

level defects. Another problem we observed when doing research on cell-internal

diagnosis is that the accuracy for diagnosing the bridge defects drops dramatically when

multi-cycle test patterns are used. This is due to the fact that the bridge defects may

behave faulty on some of the capture cycle, or behave faulty at different sites for different

capture cycles, when there are multiple capture cycles. This problem is similar to the

problem of diagnosing cell internal defects with multi-cycle test patterns. Future research

can investigate possible solutions to improve the accuracy of diagnosing bridge defects

with multi-cycle test patterns.

The efficiency of completed research on improving the throughput of volume

diagnosis has been validated through extensive experiments on industrial designs using

www.manaraa.com

128

1
2
8

various defect types. Even though the experiments show that the impact on diagnosis

accuracy and resolution is very small, future work can still focus on further reducing the

impact on diagnosis results. Another observation for partitioning based distributive

diagnosis is that the partitioning time can become the bottleneck of the throughput

improvement. If the master is too slow to generate enough design partitions to feed the

slaves, some slaves may stay idle waiting for the master, thus the throughput cannot be

further improved. Then another research point can be improving the performance of

generating partitioning. In addition, research on balancing the workloads for the slaves

can be studied to better improve the throughput.

www.manaraa.com

129

1
2
9

REFERENCES

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman, “Digital Systems Testing and

Testable Design,” IEEE Press, Piscataway, NJ, 1994.

[2] K.Y. Mei, “Bridging and Stuck-at Faults”, in IEEE Transaction On Computers, vol.

C-23(7, pp.720-727), 1974.

[3] F.J. Ferguson and T. Larrabee. “Test pattern generation for realistic bridge fault in

CMOS ICs”, in Proceedings of International Test Conference, pp. 492-499, 1991.

[4] J. A. Waicukauski, E. Lindbloom, B. K. Rosen and V. S. Iyengar, “Transition Fault

Simulation", IEEE Design and Test of Computers, Vol. 4, Issue 2, pp. 32-38, 1987.

[5] G.L. Smith, “Model for Delay Faults Based Upon Paths”, in Proceedings of IEEE

International Test Conference, pp.342-349, 1985.

[6] M. Abramovici and M. A. Breuer, “Fault diagnosis based on effect-cause analysis: an

introduction”, in Proceedings of Design Automation Conference, pp. 69-76, 1980.

[7] I. Pomeranz and S. M. Reddy, “On the generation of small dictionaries for fault

location”, in Proceedings of International Conference on Computer-Aided Design, pp.

272-279, 1992.

[8] B. Chess and T. Larrabee, “Creating small fault dictionaries”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol.18, no.3, pp. 346-

356, 1999.

[9] H. Tang, C. Liu, W.-T. Cheng, S. M. Reddy and W. Zou, “Improving Performance of

Effect-Cause Diagnosis with Minimal Memory Overhead”, in Proceedings of IEEE

Asian Test Symposium, pp. 281-287, 2007.

[10] W. Zou, W.-T. Cheng, S. M. Reddy and H. Tang, “Speeding Up Effect-Cause

Defect Diagnosis Using a Small Dictionary”, in Proceedings of IEEE VLSI Test

Symposium, pp. 225-230, 2007.

[11] R. C. Aitken, “Better models or better algorithms? On techniques to improve

fault diagnosis”, Hewlett-Packard Journal, 1995.

[12] J. Wu and E. M. Rudnick, “Bridging fault diagnosis using stuck-at fault

simulation”, IEEE Transaction on Computer-Aided Design of Integrated Circuits and

Systems, vol.19, no.4, pp. 489-495, 2000.

[13] A. Kuehlmann, D. I. Cheng, A. Srinivasan, and D. P. Lapotin, “Error diagnosis

for transistor-level verification”, in Proceedings of Design Automation Conference,

pp. 218-223, 1994.

www.manaraa.com

130

1
3
0

[14] M. Abramovici, P. R. Menon, and D. T. Miller, “Critical path tracing: An

alternative to fault simulation”, IEEE Design & Test of Computer, vol. 1, no. 1,

pp.83-93, 1984

[15] L. M. Huisman, “Diagnosing arbitrary defects in logic designs using single

location at a time (SLAT)”, IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 23, no. 1, pp. 91-101, 2004.

[16] A. Veneris, S. Venkataraman, I. N. Hajj, and W. K. Fuchs, “Multiple design

error diagnosis and correction in digital VLSI circuits”, in Proceedings of VLSI Test

Symposium, pp. 58-63, 1999.

[17] V. Boppana, R. Mukherjee, J. Jain, M. Fujita, and P. Bollineni, “Multiple error

diagnosis based on Xlists”, in Proceeddings of Design Automation Conference, pp.

660-665, 1999.

[18] T. Bartenstein, D. Heaberlin, L. Huisman, and D. Sliwinski, “Diagnosing

combinational logic designs using the single location at-at-time (SLAT) paradigm”,

in Proceedings of International Test Conference, pp. 287-296, 2001.

[19] Z. Wang, K.-H. Tsai, M. Marek-Sadowska, and J. Rajski, “An efficient and

effective methodology on the multiple fault diagnosis”, in Proceedings of

International Test Conference, pp. 329-338. 2003.

[20] Z. Wang, M. Marek-Sadowska, K.-H. Tsai and J. Rajski, “Analysis and

Methodology for Multiple-Fault Diagnosis”, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 25, no.3, pp. 558-575, 2006.

[21] J. Waicukauski and E. Lindbloom, “Failure Diagnosis of Structured VLSI”,

IEEE Design & Test of Computers, pp. 49-60, 1989.

[22] X. Yu and R. D. Blanton, “Effective and Flexible Multiple Defect Diagnosis

Methodology Using Error Propagation Analysis”, in Proceedings of International Test

Conference, pp. 17.1, 2008.

[23] X. Yu and R. D. Blanton, “Multiple Defect Diagnosis Using No Assumption On

Failing Pattern Characteristics”, in Proceedings of Design Automation Conference,

pp. 361-366, 2008.

[24] J. Ye, Y. Hu, and X. Li, “Diagnosis of multiple arbitrary faults with mask and

reinforcement effect,” In Proceedings of Design, Automation & Test in Europe

Conference, pp.885, 2010.

[25] X. Tang, W.-T. Cheng, R. Guo and S. M. Reddy, “Diagnosis of Multiple

Physical Defects Using Logic Fault Models”, in Proceedings of Asian Test

Symposium, pp. 94-99, 2010.

www.manaraa.com

131

1
3
1

[26] J. C.-M. Li, C.-W. Tseng and E. J. McCluskey, “Testing for Resistive Opens and

Stuck Opens”, in Proceedings of International Test Conference, pp. 1049-1058, 2001.

[27] J. C.-M. Li and E. J. McCluskey, “Diagnosis of Sequence-dependent Chips”, in

Proceedings of VLSI Test Symposium, pp. 187-192, 2002.

[28] J. C.-M. Li and E. J. McCluskey, “Diagnosis of Resistive-Open and Stuck-Open

Defects in Digital CMOS ICs”, Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 24, no. 11, pp. 1748-1759, 2005.

[29] X. Fan, W. Moore, C. Hora and G. Gronthoud, “Stuck-open fault diagnosis with

stuck-at model”, in Proceedings of European Test Symposium, pp. 182-187, 2005.

[30] X. Fan, W. Moore, C. Hora and G. Gronthoud, “A novel stuck-at based method

for transistor stuck-open fault diagnosis”, in Proceedings of International Test

Conference, pp. 378-386, 2005.

[31] X. Fan, W. Moore, C. Hora, M. Konijnenburgh and G. Gronthoud, “A gate-level

method for transistor-level bridging fault diagnosis”, in Proceedings of VLSI Test

Symposium, pp. 266-271, 2006.

[32] M. E. Amyeen, D. Nayak and S. Venkataraman, “Improving Precision Using

Mixed-Level Fualt Diagnosis”, in Proceedings of International Test Conference, pp.

1-10, 2006.

[33] Y. Higami, K. Saluja, H. Takahashi, S. Kobayashi and Y. Takamatsu, “Diagnosis

of Transistor Shorts in Logic Test Environment”, in Proceedings of Asian Test

Symposium, pp. 354-359, 2005.

[34] R. Desineni, O. Poku, and R. D. Blanton, “A Logic Diagnosis Methodology for

Improved Localization and Extraction of Accurate Defect Behavior”, in Proceedings

of International Test Conference, pp. 1-10, 2006.

[35] M. Sharma, W.-T. Cheng, T.-P. Tai, Y.S. Cheng, W. Hsu, C. Liu, S. M. Reddy

and A. Mann, “Faster Defect Localization in Nanometer Technology based on

defective Cell Diagnosis”, in Proceedings of International Test Conference, paper

15.3, 2007.

[36] I. Pomeranz and S.M. Reddy, “Location of Stuck-at Faults and Bridging Faults

Based on Circuit Partitioning”, In Proceedings of IEEE Transcations on Computers,

vol. 47, no.10, pp.1124, 1998.

[37] C. Liu, W.-T. Cheng, H. Tang, S. M. Reddy, W. Zou and M. Sharama,

“Hyperactive Faults Dictionary to Increase Diagnosis Throughput”, in Proceedings of

Asian Test Symposium, pp. 173-178, 2008.

www.manaraa.com

132

1
3
2

[38] S. Wang and W. Wei, “Machine Learning-based Volume Diagnosis,” In

Proceedings of Design, Automation & Test in Europe Conference & Exhibition,

pp.902, 2009

[39] V. Vapnik, “Support Vector Method for Function Approximation, Regression,

Estimation, and Signal Processing”, Wiley Inter science, Reading, M.A., 1998.

[40] X. Fan, M. Sharma, W.-T. Cheng and S. M. Reddy, “Diagnosis of Cell Internal

Defects with Multi-Cycle Test Patterns”, in Proc. of IEEE Asian Test Symposium,

2012, to appear.

[41] S. Venkataraman and S. B. Drummonds, “POIROT: A Logic Fault Diagnosis

Tool and Its Applications”, in Proc. of Intl. Test Conf., pp. 253-262, 2000.

[42] M. Keim, P. Muhmenthaler, H. Tang, M. Sharma, J. Rajski, C. Schuermyer, and

B. Benware, “A Rapid Yield Learning Flow Based on Production Integrated Layout-

Aware Diagnosis,” in Proc. of Intl. Test Conf., pp.1-10, 2006.

[43] H. Tang, S. Manish, J. Rajski, M. Keim, and B. Benware, “Analyzing Volume

Diagnosis Results with Statistical Learning for Yield Improvement,” in Proc. of

European Test Symp., pp. 145-150, 2007.

[44] M. Sharma, C. Schuermyer, and B. Benware, “Determination of Dominant-

Yield-Loss Mechanism with Volume Diagnosis,” in Proc. of IEEE Design & Test of

Computers, vol.27, no.3, pp.54-61, 2010.

[45] X. Fan, W. Moore, C. Hora and G. Gronthoud, “Extending Gate-Level Diagnosis

Tools to CMOS Intra-Gate Faults,” in Proc. of IET Computer & Digitial Techniques,

vol.1, no. 6, pp.685-693, 2007.

[46] J.C.-M. Li and E. J. McCluskey, “Diagnosis for sequence dependent chips,” in

Proc. of VLSI Test Symp., pp. 187-192, 2002.

[47] R. D. Blanton, J. T. Chen, R. Desineni, K. N. Dwarakanath, W. Maly and T. J.

Vogels, “Fault Tuples in Diagnosis of Deep-Submicron Circuits,” in Proc. of Intl.

Test Conf., pp. 233-241, 2002.

[48] F. Hapke, R. Krenz-Baath, A. Glowatz, J. Schloeffel, H. Hashempour, S.

Eichenberger, C. Hora and D. Adolfsson, “Defect-oriented cell-aware ATPG and

fault simulation for industrial cell libraries and designs,” in Proc. of Intl. Test Conf.,

paper 1.2, 2009.

[49] S. Holst and H.-J. Wunderlich, “Adaptive Debug and Diagnosis Without Fault

Dictionaries,” in Proc. of European Test Symp., pp. 20-24, 2007.

[50] Y.-S. Yang, J. B. liu, P. Thadikaran and A. Veneris, “Extraction Error Diagnosis

and Correction in High-Performance Designs,” in Proc. of Intl. Test Conf., pp. 423-

430, 2003

www.manaraa.com

133

1
3
3

[51] V. Boppana and M. Fujita, “Modeling the Unknown! Towards Model-idependent

Fault and Error Diagnosis,” in Proc. of Intl. Test Conf., pp. 1094-1101, 1998.

[52] X. Wen, T. Miyoshi, S. Kajihara, L.-T. Wang, K. K. Salujia and K. Kinoshita,

“On Per-test Fault Diagnosis Using the X-fault Model,” in Proc. of Intl. Conf. on

CAD, pp.633-640, 2004.

[53] S.-Y. Huang, “Speeding Up the Byzantine Fault Diagnosis Using Symbolic

Simulation,” in Proc. of VLSI Test Symposium. pp.193-198, 2002.

[54] X. Fan, H. Tang, S.M. Reddy, W.-T. Cheng and B. Benware, “On Using Design

Partitioning To Reduce Diagnosis Memory Footprint,” in Proceedings of IEEE Asian

Test Symposium, 2011.

[55] L. M. Huisman, M. Kassab, and L. Pastel, “Data Mining Integrated Circuit Fails

with Fail Commonalities,” in Proceedings of International Test Conference, pp. 661-

668, 2004

[56] W. C. Tam, O. Poku, and R.D. Blanton, “Systematic Defect Identification

Through Layout Snipet Clustering,” In Proceedings of IEEE International Test

Conference, pp.1, 2010.

[57] A. Leininger, P. Muhmenthaler, W.-T. Cheng, N. Tamarapalli, W. Yang, and H.

Tsai, “Compression Mode Diagnosis Enables High Volume Monitoring Diagnosis

Flow,” In Proceedings of International Test Conference, pp.7.3, 2005

[58] H. Li, D. Xu, Y. Han, K.-T. Cheng, and X. Li, “nGFSIM: A GPU-based Fault

Simulator For 1-to-n Detection And Its Appications”, In Proceedings of International

Test Conference, pp.1, 2010

[59] Charles J. Alpert and Andrew B. Kahng, “Recent Directions in Netlist

Partitioning,” Integration, the VLSI Journal, vol. 19, no. (1-2), pp. 1-81, 1995.

[60] J. Cong, W. Juan Labio, and N. Shivakumar, “Multiway VLSI Circuit

Partitioning Based On Dual Net Representation,” In Proceedings of IEEE

Transactions on Computer-Aided Design of Intergrated Circuits and Systems. Vol.

15, no. 4, pp.396, 1996.

[61] D. Kolar, J.D. Puksec, and I. Branica, “VLSI Circuit Partition Using Simulated

Annealing Algorithm,” In Proceedings of IEEE Mediterranean Electrotechnical

Conference, pp.205, 2004.

[62] C.M. Fiduccia, and R.M. Mattheyses, “A Linear-Time Heuristic for Improving

Network Partitions,” In Proceedings of Conference on Design Automation, pp.175,

1982.

www.manaraa.com

134

1
3
4

[63] S. Areibi, and A. Vannelli, “An Efficient Clustering Technique for Circuit

Partitioning,” In Proceedings of IEEE International Symposium on Circuits and

Systems, pp.671, 1996.

[64] J. Rajski, J. Tyszer, M. Kassab and N. Mukherjee, “Embedded Deterministic

Test”, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems. Vol.23, no. 5, pp. 776-792, 2004.

[65] X. Fan, H. Tang, Y. Huang, W.-T. Cheng, S. M. Reddy and B. Benware,

“Improved Volume Diagnosis Throughput Using Dynamic Design Partitioning”, in

Proceedings of IEEE International Test Conference, 2012, to appear.

[66] Y-J. Chang, M.-T. Pang, M. Brennan, A. Man, M. Keim, G. Eide, B. Benware

and T.-P. Tai, “Experiences with Layout-Aware Diagnosis – A Case Study”,

Electronic Device Failure Analysis 12(12) (2010), pp. 12-18. http://www.edfas.org

[67] J. Mekkoth, M. Krishna, J. Qian, W. Hsu, C.-H. Chen, Y.-S. Chen, N.

Tamarapalli, W.-T. Cheng, J. Tofte and M. Keim, “Yield Learning with Layout-

Aware Advanced Scan Diagnosis,” in Proceedings of International Symposium for

Testing and Failure Analysis, pp. 412-418, 2006.

http://www.edfas.org/

	Fault diagnosis of VLSI designs: cell internal faults and volume diagnosis throughput
	Recommended Citation

	tmp.1362616787.pdf.SAZPR

